Skip to main content

Introduction: Nanomedicine in the Brain

  • Chapter
  • First Online:
Book cover Nanomedicine in Brain Diseases

Abstract

In recent years, as the incidence of brain diseases in the population has gradually increased, the treatment of neuropsychiatric diseases cannot be ignored. There are many pathogenesis of neuropsychiatric diseases, such as neuronal damage, intercellular signaling disorder, and inflammatory reactions. On the other hand, blood-brain barrier (BBB) as the protective layer of the brain, to some extent, hinders the release and delivery of conventional drugs. Nanomedicines, with many excellent physiochemical properties, such as multiple modifications and surface functionalization, have attracted widespread attentions in the scientific community. In this chapter, we provide a broad overview of brain diseases and summarize the applications of nanomedicine in neuropsychiatric disorders, as well as challenges and prospects for future research. We hope that this chapter will enable readers to have a new understanding of brain diseases and nanomedicine and to promote the developments of nanomedicine in brain diseases in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misra MK, Damotte V, Hollenbach JA. The immunogenetics of neurological disease. Immunology. 2018;153:399–414.

    Article  CAS  PubMed  Google Scholar 

  2. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19(4):215–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine. 2018;13:2341–71.

    Article  CAS  PubMed  Google Scholar 

  4. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ortiz GG, Pacheco-Moises FP, Macias-Islas MA, Flores-Alvarado LJ, Mireles-Ramirez MA, Gonzalez-Renovato ED. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014;45:687–97.

    Article  CAS  PubMed  Google Scholar 

  6. Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyás B, Padmanabhan P. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomed. 2018;13:5561–76.

    Article  CAS  Google Scholar 

  7. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev. 2012;64:1363–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials. 2018;155:217–35.

    Article  CAS  PubMed  Google Scholar 

  9. Son J, Yi G, Yoo J, Park C, Koo H, Choi HS. Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv Drug Deliv Rev. 2018;138:133–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat mater. 2013;12:991–1003.

    Article  CAS  PubMed  Google Scholar 

  11. Qian CG, Chen YL, Feng PJ, Xiao XZ, Dong M, Yu JC, et al. Conjugated polymer nanomaterials for theranostics. Acta Pharmacol Sin. 2017;38:764–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu TM, Conde J, Lipiński T, Bednarkiewicz A, Huang CC. Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater. 2016;8:e295.

    Article  CAS  Google Scholar 

  13. Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol. 2008;3:139–43.

    Article  CAS  PubMed  Google Scholar 

  14. Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater. 2017;2:16093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science. 2012;336:604–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang SY, Chiu MJ, Lin CH, Horng HE, Yang CC, Chieh JJ, et al. Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles. J Nanobiotechnol. 2016;14:41.

    Article  CAS  Google Scholar 

  17. Rodeberg NT, Sandberg SG, Johnson JA, Phillips PEM, Wightman RM. Hitchhiker’s guide to voltammetry: Acute and chronic electrodes for in vivo fast-scan cyclic voltammetry. ACS Chem Neurosci. 2017;8:221–34.

    Article  CAS  PubMed  Google Scholar 

  18. Liu TC, Chuang MC, Chu CY, Huang WC, Lai HY, Wang CT, et al. Implantable graphene-based neural electrode interfaces for electrophysiology and neurochemistry in in vivo hyperacute stroke model. ACS Appl Mater Interfaces. 2016;8:187–96.

    Article  CAS  PubMed  Google Scholar 

  19. Hu X, Wei H, Liu J, Zhang J, Chi X, Jiang P, et al. Nanoenvelopes: Wrapping a single-walled carbon nanotube with graphene using an atomic force microscope. Adv Mater. 2018:e1804918. https://doi.org/10.1002/adma.201804918.

    Article  CAS  Google Scholar 

  20. Vitale F, Summerson SR, Aazhang B, Kemere C, Pasquali M. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano. 2015;9:4465–74.

    Article  CAS  PubMed  Google Scholar 

  21. Xue X, Wang LR, Sato Y, Jiang Y, Berg M, Yang DS, et al. Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett. 2014;14:5110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xue X, Yang JY, He Y, Wang LR, Liu P, Yu LS, et al. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nat Nanotechnol. 2016;11:613–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang J, Luk’yanchuk B. Magnetic light. Sci Rep. 2012;2:492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Gu L, Hall DJ, Qin Z, Anglin E, Joo J, Mooney DJ, et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun. 2013;4:2326.

    Article  PubMed  CAS  Google Scholar 

  25. Kwiatkowski G, Jahnig F, Steinhauser J, Wespi P, Ernst M, Kozerke S. Nanometer size silicon particles for hyperpolarized MRI. Sci Rep. 2017;7:7946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhao Y, Jiang Y, Lv W, Wang Z, Lv L, Wang B, et al. Dual targeted nanocarrier for brain ischemic stroke treatment. J Control Release. 2016;233:64–71.

    Article  CAS  PubMed  Google Scholar 

  27. Parameswaran R, Carvalho-de-Souza JL, Jiang Y, Burke MJ, Zimmerman JF, Koehler K, et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nat Nanotechnol. 2018;13:260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li W, Li Y, Liu Z, Kerdsakundee N, Zhang M, Zhang F, et al. Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials. 2018;185:322–32.

    Article  CAS  PubMed  Google Scholar 

  29. Loureiro JA, Andrade S, Duarte A, Neves AR, Queiroz JF, Nunes C, et al. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules. 2017;22 https://doi.org/10.3390/molecules22020277.

    Article  PubMed Central  CAS  Google Scholar 

  30. Hernando S, Herran E, Figueiro-Silva J, Pedraz JL, Igartua M, Carro E, et al. Intranasal administration of TAT-conjugated lipid nanocarriers loading GDNF for Parkinson’s disease. Mol Neurobiol. 2018;55:145–55.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao YZ, Li X, Lu CT, Lin M, Chen LJ, Xiang Q, et al. Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomedicine. 2014;10:755–64.

    Article  CAS  PubMed  Google Scholar 

  32. Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv. 2016;13:1121–31.

    Article  CAS  PubMed  Google Scholar 

  33. Tokatlian T, Kulp DW, Mutafyan AA, Jones CA, Menis S, Georgeson E, et al. Enhancing humoral responses against HIV envelope trimers via nanoparticle delivery with stabilized synthetic liposomes. Sci Rep. 2018;8:16527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Siddiqi KS, Husen A, Sohrab SS, Yassin MO. Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett. 2018;13:231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chung GY, Shim KH, Kim HJ, Min SK, Shin HS. Chitosan-coated C-phycocyanin liposome for extending the neuroprotective time window against ischemic brain stroke. Curr Pharm Des. 2018;24:1859–64.

    Article  CAS  PubMed  Google Scholar 

  36. Wei Y, Guo J, Zheng X, Wu J, Zhou Y, Yu Y, et al. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int J Nanomed. 2014;9:3623–30.

    CAS  Google Scholar 

  37. Kundu P, Das M, Tripathy K, Sahoo SK. Delivery of dual drug loaded lipid based nanoparticles across the blood-brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem Neurosci. 2016;7:1658–70.

    Article  CAS  PubMed  Google Scholar 

  38. Lu YM, Huang JY, Wang H, Lou XF, Liao MH, Hong LJ, et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials. 2014;35:530–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kamp F, Scheidt HA, Winkler E, Basset G, Heinel H, Hutchison JM, et al. Bexarotene binds to the amyloid precursor protein transmembrane domain, alters its alpha-helical conformation, and inhibits gamma-secretase nonselectively in liposomes. ACS Chem Neurosci. 2018;9:1702–13.

    Article  CAS  PubMed  Google Scholar 

  40. Dowding JM, Song W, Bossy K, Karakoti A, Kumar A, Kim A, et al. Cerium oxide nanoparticles protect against Abeta-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ. 2014;21:1622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guan Y, Li M, Dong K, Gao N, Ren J, Zheng Y, et al. Ceria/POMs hybrid nanoparticles as a mimicking metallopeptidase for treatment of neurotoxicity of amyloid-beta peptide. Biomaterials. 2016;98:92–102.

    Article  CAS  PubMed  Google Scholar 

  42. Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin K, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano. 2016;10:2860–70.

    Article  CAS  PubMed  Google Scholar 

  43. Wahba SM, Darwish AS, Kamal SM. Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer’s disease in ovariectomized albino-rat model. Mater Sci Eng C. 2016;65:151–63.

    Article  CAS  Google Scholar 

  44. Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D. Advances in highly doped upconversion nanoparticles. Nat Commun. 2018;9:2415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Zhou B, Shi B, Jin D, Liu X. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015;10:924–36.

    Article  CAS  PubMed  Google Scholar 

  46. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science. 2018;359:679–84.

    Article  CAS  PubMed  Google Scholar 

  47. Feng W, Zhu X, Li F. Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Mater. 2013;5:e75.

    Article  CAS  Google Scholar 

  48. Lv R, Yang P, Chen G, Gai S, Xu J, Prasad PN. Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. Sci Rep. 2017;7:13562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jin D, Xi P, Wang B, Zhang L, Enderlein J, van Oijen AM. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods. 2018;15:415–23.

    Article  CAS  PubMed  Google Scholar 

  50. Warburton RJ. Single spins in self-assembled quantum dots. Nat Mater. 2013;12:483–93.

    Article  CAS  PubMed  Google Scholar 

  51. Xu G, Mahajan S, Roy I, Yong KT. Theranostic quantum dots for crossing blood-brain barrier in vitro and providing therapy of HIV-associated encephalopathy. Front Pharmacol. 2013;4:140.

    PubMed  PubMed Central  Google Scholar 

  52. Wen X, Wang Y, Zhang F, Zhang X, Lu L, Shuai X, et al. In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials. 2014;35:4627–35.

    Article  CAS  PubMed  Google Scholar 

  53. He J, Yang H, Zhang Y, Yu J, Miao L, Song Y, et al. Smart nanocomposites of Cu-hemin metal-organic frameworks for electrochemical glucose biosensing. Sci Rep. 2016;6:36637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lian X, Erazo-Oliveras A, Pellois JP, Zhou HC. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat Commun. 2017;8:2075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chen H, Wang J, Shan D, Chen J, Zhang S, Lu X. Dual-emitting fluorescent metal-organic framework nanocomposites as a broad-range pH sensor for fluorescence imaging. Anal Chem. 2018;90:7056–63.

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Fan Y, Tan Y, Zhao X, Zhang Y, Cheng C, et al. Porphyrinic metal-organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s amyloid-beta peptide. ACS Appl Mater Interfaces. 2018;10:36615–21.

    Article  CAS  PubMed  Google Scholar 

  57. Rhee M, Valencia PM, Rodriguez MI, Langer R, Farokhzad OC, Karnik R. Synthesis of size-tunable polymeric nanoparticles enabled by 3D hydrodynamic flow focusing in single-layer microchannels. Adv Mater. 2011;23:H79–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pourcin F, Reynaud C, Carlberg M, Le Rouzo J, Duche D, Simon JJ, et al. Plasmonic nanocomposites based on silver nanocube-polymer blends displaying Nearly Perfect Absorption in the UV region. Langmuir. 2018; https://doi.org/10.1021/acs.langmuir.8b03003.

    Article  CAS  Google Scholar 

  59. Bible E, Qutachi O, Chau DY, Alexander MR, Shakesheff KM, Modo M. Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials. 2012;33:7435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Okamoto S, Yoshii H, Matsuura M, Kojima A, Ishikawa T, Akagi T, et al. Poly-gamma-glutamic acid nanoparticles and aluminum adjuvant used as an adjuvant with a single dose of Japanese encephalitis virus-like particles provide effective protection from Japanese encephalitis virus. Clin Vaccine Immunol. 2012;19:17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Piazza J, Hoare T, Molinaro L, Terpstra K, Bhandari J, Selvaganapathy PR, et al. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. Eur J Pharm Biopharm. 2014;87:30–9.

    Article  CAS  PubMed  Google Scholar 

  62. Sun B, Sun MJ, Gu Z, Shen QD, Jiang SJ, Xu Y, et al. Conjugated polymer fluorescence probe for intracellular imaging of magnetic nanoparticles. Macromolecules. 2010;43:10348–54.

    Article  CAS  Google Scholar 

  63. Mura S, Couvreur P. Nanotheranostics for personalized medicine. Adv Drug Deliv Rev. 2012;64:1394–416.

    Article  CAS  PubMed  Google Scholar 

  64. Chen XY, Gambhlr SS, Cheon J. Theranostic nanomedicine. Acc Chem Res. 2011;44:841.

    Article  CAS  PubMed  Google Scholar 

  65. Barks A, Hall AM, Tran PV, Georgieff MK. Iron as a model nutrient for understanding the nutritional origins of neuropsychiatric disease. Pediatr Res. 2018; https://doi.org/10.1038/s41390-018-0204-8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gan L, Cookson MR, Petrucelli L, La Spada AR. Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci. 2018;21:1300–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Forrest MP, Parnell E, Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci. 2018;19:215–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lago SG, Tomasik J, van Rees GF, Ramsey JM, Haenisch F, Cooper JD, et al. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol Psychiatry. 2018; https://doi.org/10.1038/s41380-018-0123-4.

  69. Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: Synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J Nanobiotechnol. 2018;16:87.

    Article  CAS  Google Scholar 

  70. Kaushik AC, Bharadwaj S, Kumar S, Wei DQ. Nano-particle mediated inhibition of Parkinson’s disease using computational biology approach. Sci Rep. 2018;8:9169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New Engl J Med. 2012;367:795–804.

    Article  CAS  PubMed  Google Scholar 

  72. Mann AP, Scodeller P, Hussain S, Braun GB, Molder T, Toome K, et al. Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer’s disease. Nat Commun. 2017;8:1403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Eitan E, Hutchison ER, Marosi K, Comotto J, Mustapic M, Nigam SM, et al. Extracellular vesicle-associated abeta mediates trans-neuronal bioenergetic and Ca(2+)-handling deficits in Alzheimer’s disease models. NPJ Aging Mech Dis. 2016;2016:2.

    Google Scholar 

  74. Zhang M, Mao X, Yu Y, Wang CX, Yang YL, Wang C. Nanomaterials for reducing amyloid cytotoxicity. Adv Mater. 2013;25:3780–801.

    Article  CAS  PubMed  Google Scholar 

  75. Shao X, Ma W, Xie X, Li Q, Lin S, Zhang T, et al. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s disease. ACS Appl Mater Interfaces. 2018;10:23682–92.

    Article  CAS  PubMed  Google Scholar 

  76. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.

    Article  PubMed  Google Scholar 

  77. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS Nano. 2014;8:76–103.

    Article  CAS  PubMed  Google Scholar 

  78. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm. 2010;389:207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang M, Pi J, Long Y, Huang N, Cheng Y, Zheng H. Quantum dots-based sandwich immunoassay for sensitive detection of Alzheimer’s disease-related Abeta1-42. Spectrochim Acta Part A, Mol Biomol Spectrosc. 2018;201:82–7.

    Article  CAS  Google Scholar 

  80. Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, et al. A self-destructive nanosweeper that captures and clears amyloid beta-peptides. Nat Commun. 2018;9:1802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Saiki S, Hatano T, Fujimaki M, Ishikawa KI, Mori A, Oji Y, et al. Decreased long-chain acylcarnitines from insufficient beta-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci Rep. 2017;7:7328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ruggeri FS, Mahul-Mellier AL, Kasas S, Lashuel HA, Longo G, Dietler G. Amyloid single-cell cytotoxicity assays by nanomotion detection. Cell Death Dis. 2017;3:17053.

    Article  CAS  Google Scholar 

  83. Atashrazm F, Hammond D, Perera G, Dobson-Stone C, Mueller N, Pickford R, et al. Reduced glucocerebrosidase activity in monocytes from patients with Parkinson’s disease. Sci Rep. 2018;8:15446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Yue HY, Huang S, Chang J, Heo C, Yao F, Adhikari S. ZnO nanowire arrays on 3D hierachical graphene foam: Biomarker detection of Parkinson’s disease. ACS Nano. 2014;8:1639–46.

    Article  CAS  PubMed  Google Scholar 

  85. Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P. Development of a controlled-release anti-parkinsonian nanodelivery system using levodopa as the active agent. Int J Nanomed. 2013;8:1103–10.

    Article  CAS  Google Scholar 

  86. Liu Y, Guo Y, An S, Kuang Y, He X, Ma H. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson’s disease. PLoS One. 2013;8:e62905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ma W, Qin LX, Liu FT, Gu Z, Wang J, Pan ZG. Ubiquinone-quantum dot bioconjugates for in vitro and intracellular complex I sensing. Sci Rep. 2013;3:1537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Niu S, Zhang LK, Zhang L, Zhuang S, Zhan X, Chen WY. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics. 2017;7:344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nih LR, Sideris E, Carmichael ST, Segura T. Injection of microporous annealing particle (MAP) hydrogels in the stroke cavity reduces gliosis and inflammation and promotes NPC migration to the lesion. Adv Mater. 2017;29 https://doi.org/10.1002/adma.201606471.

    Article  CAS  Google Scholar 

  90. Nih LR, Gojgini S, Carmichael ST, Segura T. Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat Mater. 2018;17:642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shcharbina N, Shcharbin D, Bryszewska M. Nanomaterials in stroke treatment: Perspectives. Stroke. 2013;44:2351–5.

    Article  PubMed  Google Scholar 

  92. Machado-Pereira M, Santos T, Ferreira L, Bernardino L, Ferreira R. Intravenous administration of retinoic acid-loaded polymeric nanoparticles prevents ischemic injury in the immature brain. Neurosci Lett. 2018;673:116–21.

    Article  CAS  PubMed  Google Scholar 

  93. Gao Y, Chen X, Liu H. A facile approach for synthesis of nano-CeO2 particles loaded co-polymer matrix and their colossal role for blood-brain barrier permeability in Cerebral Ischemia. J Photochem Photobiol B. 2018;187:184–9.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang T, Li CY, Jia JJ, Chi JS, Zhou D, Li JZ. Combination therapy with LXW7 and ceria nanoparticles protects against acute cerebral ischemia/reperfusion injury in rats. Curr Med Sci. 2018;38:144–52.

    Article  CAS  PubMed  Google Scholar 

  95. Manickam DS, Brynskikh AM, Kopanic JL, Sorgen PL, Klyachko NL, Batrakova EV. Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. J Control Release. 2012;162:636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zabow G, Dodd SJ, Koretsky AP. Shape-changing magnetic assemblies as high-sensitivity NMR-readable nanoprobes. Nature. 2015;520:73–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li M, Liu Y, Chen J, Liu T, Gu Z, Zhang J. Platelet bio-nanobubbles as microvascular recanalization nanoformulation for acute ischemic stroke lesion theranostics. Theranostics. 2018;8:4870–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huq R, Samuel EL, Sikkema WK, Nilewski LG, Lee T, Tanner MR. Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Sci Rep. 2016;6:33808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Poser CM. Multiple sclerosis trait: The premorbid stage of multiple sclerosis. A hypothesis. Acta Neurol Scand. 2004;109:239–43.

    Article  CAS  PubMed  Google Scholar 

  100. Tysiak E, Asbach P, Aktas O, Waiczies H, Smyth M, Schnorr J. Beyond blood brain barrier breakdown – In vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI. J Neuroinflamm. 2009;6:20.

    Article  Google Scholar 

  101. Annunziata P, Cioni C, Masi G, Tassi M, Marotta G, Severi S. Fingolimod reduces circulating tight-junction protein levels and in vitro peripheral blood mononuclear cells migration in multiple sclerosis patients. Sci Rep. 2018;8:15371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano. 2014;8:2148–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tostanoski LH, Chiu YC, Andorko JI, Guo M, Zeng X, Zhang P. Design of polyelectrolyte multilayers to promote immunological tolerance. ACS Nano. 2016; https://doi.org/10.1021/acsnano.6b04001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol. 2010;299:L760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol. 2012;30:1217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tabansky I, Messina MD, Bangeranye C, Goldstein J, Blitz-Shabbir KM, Machado S. Advancing drug delivery systems for the treatment of multiple sclerosis. Immunol Res. 2015;63:58–69.

    Article  CAS  PubMed  Google Scholar 

  107. Broza YY, Har-Shai L, Jeries R, Cancilla JC, Glass-Marmor L, Lejbkowicz I. Exhaled breath markers for nonimaging and noninvasive measures for detection of multiple sclerosis. ACS Chem Neurosci. 2017;8:2402–13.

    Article  CAS  PubMed  Google Scholar 

  108. Zhao X, Zhao H, Chen Z, Lan M. Ultrasmall superparamagnetic iron oxide nanoparticles for magnetic resonance imaging contrast agent. J Nanosci Nanotechnol. 2014;14:210–20.

    Article  CAS  PubMed  Google Scholar 

  109. Randall EC, Emdal KB, Laramy JK, Kim M, Roos A, Calligaris D. Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nat Commun. 2018;9:4904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8:610–22.

    Article  CAS  PubMed  Google Scholar 

  111. Hekmatara T, Bernreuther C, Khalansky AS, Theisen A, Weissenberger J, Matschke J. Efficient systemic therapy of rat glioblastoma by nanoparticle-bound doxorubicin is due to antiangiogenic effects. Clin Neuropathol. 2009;28:153–64.

    Article  CAS  PubMed  Google Scholar 

  112. Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann Oncol. 2017;28:1457–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu M, Zhang H, Tie C, Yan C, Deng Z, Wan Q. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat Commun. 2018;9:4777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Jiang YW, Cheng HY, Kuo CL, Way TD, Lien JC, Chueh FS. Tetrandrine inhibits human brain glioblastoma multiforme GBM 8401 cancer cell migration and invasion in vitro. Environ Toxicol. 2018; https://doi.org/10.1002/tox.22691.

  115. Keller S, Schmidt MHH. EGFR and EGFRvIII promote angiogenesis and cell invasion in glioblastoma: Combination therapies for an effective treatment. Int J Mol Sci. 2017;18:1295.

    Article  PubMed Central  CAS  Google Scholar 

  116. Zhang H, Zhu Y, Sun X, He X, Wang M, Wang Z. Curcumin-loaded layered double hydroxide nanoparticles-induced autophagy for reducing glioma cell migration and invasion. J Biomed Nanotechnol. 2016;12:2051–62.

    Article  CAS  PubMed  Google Scholar 

  117. Fang K, Liu P, Dong S, Guo Y, Cui X, Zhu X. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells. Int J Oncol. 2016;49:509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wadajkar AS, Dancy JG, Roberts NB, Connolly NP, Strickland DK, Winkles J. A decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. J Control Release. 2017;267:144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Plomin R, Owen MJ, McGuffin P. The genetic basis of complex human behaviors. Science. 1994;264:1733–9.

    Article  CAS  PubMed  Google Scholar 

  120. G BDD, Hale Collaborators, Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: Quantifying the epidemiological transition. Lancet. 2015;386:2145–91.

    Article  Google Scholar 

  121. Ge T, Fan J, Yang W, Cui R, Li B. Leptin in depression: A potential therapeutic target. Cell Death Dis. 2018;9:1096.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lee Y, Subramaniapillai M, Brietzke E, Mansur RB, Ho RC, Yim SJ. Anti-cytokine agents for anhedonia: Targeting inflammation and the immune system to treat dimensional disturbances in depression. Ther Adv Psychopharmacol. 2018;8:337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lieberman A. Depression in Parkinson’s disease -- A review. Acta Neurol Scand. 2006;113:1–8.

    Article  CAS  PubMed  Google Scholar 

  124. Abdallah CG, Adams TG, Kelmendi B, Esterlis I, Sanacora G, Krystal JH. Ketamine’s mechanism of action: A path to rapid-acting antidepressants. Depress Anxiety. 2016;33:689–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. He X, Yang L, Wang M, Zhuang X, Huang R, Zhu R. Targeting the Endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem. 2017;42:2281–94.

    Article  CAS  PubMed  Google Scholar 

  126. Raabe FJ, Galinski S, Papiol S, Falkai PG, Schmitt A, Rossner MJ. Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ Schizophr. 2018;4:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Joseph E, Reddi S, Rinwa V, Balwani G, Saha R. Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects. Eur J Pharm Sci. 2017;104:315–25.

    Article  CAS  PubMed  Google Scholar 

  128. Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L. Angiopep-conjugated electro-responsive hydrogel nanoparticles: Therapeutic potential for epilepsy. Angew Chem Int Ed Engl. 2014;53:12436–40.

    CAS  PubMed  Google Scholar 

  129. Pedram MZ, Shamloo A, Alasty A, Ghafar-Zadeh E. Toward epileptic brain region detection based on magnetic nanoparticle patterning. Sensors (Basel). 2015;15:24409–27.

    Article  CAS  Google Scholar 

  130. Fu T, Kong Q, Sheng H, Gao L. Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI. Neural Plast. 2016;2016:2412958.

    PubMed  PubMed Central  Google Scholar 

  131. Yu YH, Hsu YH, Chou YC, Fan CL, Ueng SW, Kau YC. Sustained relief of pain from osteosynthesis surgery of rib fracture by using biodegradable lidocaine-eluting nanofibrous membranes. Nanomedicine. 2016;12:1785–93.

    Article  CAS  PubMed  Google Scholar 

  132. Jin HJ, An JM, Park J, Moon SJ, Hong S. “Chemical-pain sensor” based on nanovesicle-carbon nanotube hybrid structures. Biosens Bioelectron. 2013;49:86–91.

    Article  CAS  PubMed  Google Scholar 

  133. Lee B, Lee K, Panda S, Gonzales-Rojas R, Chong A, Bugay V, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018;2:497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Brown NF, Carter TJ, Ottaviani D, Mulholland P. Harnessing the immune system in glioblastoma. Br J Cancer. 2018;119:1171–81.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wang L, Lockstone HE, Guest PC, Levin Y, Palotas A, Pietsch S. Expression profiling of fibroblasts identifies cell cycle abnormalities in schizophrenia. J Proteome Res. 2010;9:521–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (31771031 and 81701829), and the National Key Research and Development Program of China (2018YFA0209800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, TQ., Huang, LW., Xue, X. (2019). Introduction: Nanomedicine in the Brain. In: Xue, X. (eds) Nanomedicine in Brain Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8731-9_1

Download citation

Publish with us

Policies and ethics