Skip to main content

The Future and Development Trends of Computational Chemistry Applied in Concrete Science

  • Chapter
  • First Online:
Molecular Simulation on Cement-Based Materials

Abstract

In previous sections, the atomistic simulation methods have been introduced to the materials science for cement-based materials to decode the intrinsic building block of the cement hydrate at nanoscale. The molecular dynamics method exhibits the significant advantage in investigating the properties of cement-based concrete material at nanoscale and opens a novel pathway for design of construction and building materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, H. (1998). COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 102(38), 7338–7364.

    Article  CAS  Google Scholar 

  2. Faucon, P., Delaye, J. M., Virlet, J., Jacquinot, J. F., & Adenot, F. (1997). Study of the structural properties of the C–S–H(I) by molecular dynamics simulation. Cement and Concrete Research, 27(10), 1581–1590.

    Article  CAS  Google Scholar 

  3. Heinz, H., Lin, T.-J., Kishore Mishra, R., & Emami, F. S. (2013). Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field. Langmuir, 29(6), 1754–1765.

    Article  CAS  Google Scholar 

  4. Galmarini, S., Aimable, A., Ruffray, N., & Bowen, P. (2011). Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment. Cement and Concrete Research, 41(12), 1330–1338.

    Article  CAS  Google Scholar 

  5. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035.

    Article  CAS  Google Scholar 

  6. Mishra, R. K., Mohamed, A. K., Geissbühler, D., Manzano, H., Jamil, T., Shahsavari, R., et al. (2017). cemff: A force field database for cementitious materials including validations, applications and opportunities. Cement and Concrete Research, 102, 68–89.

    Article  CAS  Google Scholar 

  7. Izvekov, S., & Voth, G. A. (2005). A multiscale coarse-graining method for biomolecular systems. Journal of Physical Chemistry B, 109(7), 2469–2473.

    Article  CAS  Google Scholar 

  8. Noid, W. G., Chu, J. W., Ayton, G. S., Krishna, V., Izvekov, S., Voth, G. A., et al. (2008). The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. The Journal of Chemical Physics, 128(24), 2469.

    Article  CAS  Google Scholar 

  9. Noid, W. G., Liu, P., Wang, Y., Chu, J. W., Ayton, G. S., Izvekov, S., et al. (2008). The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. Journal of Chemical Physics, 128(24), 2469–2307.

    Article  CAS  Google Scholar 

  10. Shinoda, W., DeVane, R., & Klein, M. L. (2008). Coarse-grained molecular modeling of non-ionic surfactant self-assembly. Soft Matter, 4(12), 2454–2462.

    Article  CAS  Google Scholar 

  11. Wang, Y., Noid, W. G., Liu, P., & Voth, G. A. (2009). Effective force coarse-graining. Physical Chemistry Chemical Physics, 11(12), 2002–2015.

    Article  CAS  Google Scholar 

  12. Bonnaud, P. A., Labbez, C., Miura, R., Suzuki, A., Miyamoto, N., Hatakeyama, N., et al. (2016). Interaction grand potential between calcium–silicate–hydrate nanoparticles at the molecular level. Nanoscale, 8(7), 4160–4172.

    Article  CAS  Google Scholar 

  13. Yu, Z., & Lau, D. (2015). Nano- and mesoscale modeling of cement matrix. Nanoscale Research Letters, 10(1), 1–6.

    Article  Google Scholar 

  14. Yu, Z., Zhou, A., & Lau, D. (2016). Mesoscopic packing of disk-like building blocks in calcium silicate hydrate. Scientific Reports, 6, 36967.

    Article  CAS  Google Scholar 

  15. Jennings, H. M. (2008). Refinements to colloid model of C–S–H in cement: CM-II. Cement and Concrete Research, 38(3), 275–289.

    Article  CAS  Google Scholar 

  16. Ioannidou, K., Krakowiak, K. J., Bauchy, M., Hoover, C. G., Masoero, E., Yip, S., et al. (2016). Mesoscale texture of cement hydrates. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2029.

    Article  CAS  Google Scholar 

  17. Ioannidou, K., Del Gado, E., Ulm, F.-J., & Pellenq, R. J.-M. (2017). Inhomogeneity in cement hydrates: Linking local packing to local pressure. Journal of Nanomechanics and Micromechanics, 7(2), 04017003.

    Article  Google Scholar 

  18. Qian, Z., Ye, G., Schlangen, E., & Van Breugel, K. (2011). 3D lattice fracture model: Application to cement paste at microscale. Key Engineering Materials, 452–453, 65–68.

    Google Scholar 

  19. Ioannidou, K., Pellenq, R. J., & Del, G. E. (2014). Controlling local packing and growth in calcium–silicate–hydrate gels. Soft Matter, 10(8), 1121–1133.

    Article  CAS  Google Scholar 

  20. Duxson, P., Lukey, G. C., Separovic, F., & Deventer, J. S. J. V. (2005). Effect of alkali cations on aluminum incorporation in geopolymeric gels. Industrial and Engineering Chemistry Research, 44(4), 832–839.

    Article  CAS  Google Scholar 

  21. Barbosa, V. F. F., Mackenzie, K. J. D., & Thaumaturgo, C. (2000). Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. International Journal of Inorganic Materials, 2(4), 309–317.

    Article  CAS  Google Scholar 

  22. Duxson, P., Provis, J. L., Lukey, G. C., Separovic, F., & Deventer, J. S. J. V. (2005). Si-29 NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir, 21(7), 3028–3036.

    Article  CAS  Google Scholar 

  23. Singh, P. S., Trigg, M., Burgar, I., & Bastow, T. (2005). Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR. Materials Science and Engineering: A, 396(1), 392–402.

    Article  Google Scholar 

  24. Duxson, P., Lukey, G. C., & Deventer, J. S. J. V. (2007). Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. Journal Materials Science, 42(9), 3044–3054.

    Article  CAS  Google Scholar 

  25. Zhang, Z., Wang, H., Provis, J. L., Bullen, F., Reid, A., & Zhu, Y. (2012). Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim. Acta, 539(13), 23–33.

    Google Scholar 

  26. Bell, J. L., Sarin, P., Driemeyer, P. E., Haggerty, R. P., Chupas, P. J., & Kriven, W. M. (2008). X-ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer). Journal of Materials Chemistry, 18(48), 5974–5981.

    Google Scholar 

  27. White, C. E., Provis, J. L., Proffen, T., & Deventer, J. S. J. V. (2010). The effects of temperature on the local structure of metakaolin-based geopolymer binder: A neutron pair distribution function investigation. Journal of the American Ceramic Society, 93(10), 3486–3492.

    Article  CAS  Google Scholar 

  28. White, C. E., Provis, J. L., Llobet, A., Proffen, T., & Deventer, J. S. J. V. (2011). Evolution of local structure in geopolymer gels: An in situ neutron pair distribution function analysis. Journal of the American Ceramic Society, 94(10), 3532–3539.

    Article  CAS  Google Scholar 

  29. White, C. E., Provis, J. L., Proffen, T., & van Deventer, J. S. J. (2012). Molecular mechanisms responsible for the structural changes occurring during geopolymerization: Multiscale simulation. AIChE Journal, 58(7), 2241–2253.

    Article  CAS  Google Scholar 

  30. Bauchy, M., Abdolhosseini Qomi, M. J., Bichara, C., Ulm, F.-J., & Pellenq, R. J. M. (2014). Nanoscale structure of cement: Viewpoint of rigidity theory. The Journal of Physical Chemistry C, 118(23), 12485–12493.

    Article  CAS  Google Scholar 

  31. Büyüköztürk, O., Buehler, M. J., Lau, D., & Tuakta, C. (2011). Structural solution using molecular dynamics: Fundamentals and a case study of epoxy-silica interface. International Journal of Solids and Structures, 48(14), 2131–2140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongshuai Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, D. (2020). The Future and Development Trends of Computational Chemistry Applied in Concrete Science. In: Molecular Simulation on Cement-Based Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8711-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8711-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8710-4

  • Online ISBN: 978-981-13-8711-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics