Skip to main content

Modeling the Calcium Silicate Hydrate by Molecular Simulation

  • Chapter
  • First Online:
Molecular Simulation on Cement-Based Materials
  • 794 Accesses

Abstract

Chapter 2 reviewed the experimental, theoretical, and computational study on the molecular structure of the C–S–H gel. Experimental study provides the physical and chemical features of the C–S–H gel, which provides fundamental base for the modeling. Meanwhile, the theoretical contributions give valuable insights into the molecular structural evolution mechanism of the complicated cement hydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cong, X., & Kirkpatrick, R. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Material, 3(3–4), 144–156.

    Article  CAS  Google Scholar 

  2. Janika, J. A., Kurdowsk, W., Podsiadey, R., & Samset, J. (2001). Fraxtal structure of CSH and tobermorite phases. Acta Physica Polonica, 100, 529–537.

    Article  Google Scholar 

  3. Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium silicate hydrate in cement. Nature Material, 6, 311–316.

    Article  CAS  Google Scholar 

  4. Merlino, S., Bonnacorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11 Å: Normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577–590.

    Article  CAS  Google Scholar 

  5. Hamid, S. A. (1981). The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·H2O. Zeitschrifit fur Kristallographie, 154(3–4), 189–198.

    Google Scholar 

  6. Bonnacorsi, E., Merlino, S., & Taylor, H. (2004). The crystal structure of Jennite Ca9Si6O18(OH)6·8H2O. Cement and Concrete Research, 34(9), 1481–1488.

    Article  Google Scholar 

  7. Pellenq, R. J. M., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., & Yip, S. (2009). A realistic molecular model of cement hydrates. PNAS, 106(38), 16102–16107.

    Article  CAS  Google Scholar 

  8. Shahsavari, R., Pellenq, R. J. M., & Ulm, F. J. (2011). Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics, 13(3), 1002–1011.

    Article  CAS  Google Scholar 

  9. Youssef, M., Pellenq, R. J. M., & Yildiz, B. (2011). Glassy nature of water in an ultraconfining disordered material: The case of calcium silicate hydrate. Journal of American Chemistry Society, 133(8), 2499–2510.

    Article  CAS  Google Scholar 

  10. Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J.-M., & Van Vliet, K. J. (2012). Thermodynamics of water confined in porous calcium-silicate-hydrates. Langmuir, 28(31), 11422–11432.

    Article  CAS  Google Scholar 

  11. Ji, Q., Pellenq, R. J. M., & Van Vliet, K. J. (2012). Comparison of computational water models for simulation of calcium silicate hydrate. Computational Material Science, 53(1), 234–240.

    Article  CAS  Google Scholar 

  12. Qomi, M. J. A., Ulm, F. J., & Pellenq, R. J. M. (2012). Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations. Journal of the American Ceramic Society, 95(3), 1128–1137.

    CAS  Google Scholar 

  13. Brough, A. R., Dobson, C. M., Richardson, I. G., & Groves, G. W. (1994). In situ solid-state NMR studies of Ca3SiO5: Hydration at room temperature and at elevated temperatures using 29Si enrichment. Journal of Materials Science, 29(15), 3926–3940.

    Article  CAS  Google Scholar 

  14. Richardson, I. G. (2013). The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides. Acta Crystallographica Section B, 69, 150–162.

    Article  CAS  Google Scholar 

  15. Thomas, J. J., Chen, J., Jennings, H. M., & Neumann, D. A. (2003). Ca–OH bonding in the C–S–H gel of tricalcium silicate and white Portland cement pastes measured by inelastic neutron scattering. Chemistry of Materials, 15(20).

    Google Scholar 

  16. Manzano, H., Moeini, S., Marinelli, F., van Duin, A. C. T., Ulm, F. J., & Pellenq, R. J. M. (2011). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemistry Society, 134(4), 2208–2215.

    Article  Google Scholar 

  17. Murray, S. J., Subramani, V. J., Selvam, R. P., & Hall, K. D. (2010). Molecular dynamics to understand the mechanical behavior of cement paste. Journal of the Transportation Research Board, 2142(11), 75–82.

    Article  CAS  Google Scholar 

  18. Dolado, J. S., Griebel, M., & Hamaekers, J. (2007). A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels. Journal of American Ceramic Society, 90, 3938–3942.

    CAS  Google Scholar 

  19. Puibasset, J., & Pellenq, R. J. M. (2008). Grand canonical Monte Carlo simulation study of water adsorption in silicalite at 300 K. The Physical and Chemistry B, 112(20), 6390–6397.

    Article  CAS  Google Scholar 

  20. Gmira, A. (2003). Etude texturale et thermodynamique d’hydrates modèles du ciment. Orléans.

    Google Scholar 

  21. Janik, Y., Kurdowski, W., Podsiadly, R., & Samseth, J. (2001). Fractal structure of CSH and tobermorite phases. Acta Physica Polonica Series A, 100(4), 529–538.

    Article  CAS  Google Scholar 

  22. Yu, P., Kirkpatrick, R. J., Poe, B., McMillan, P. F., & Cong, X. (1999). Structure of calcium silicate hydrate (C–S–H): Near-, mid-, and far-infrared spectroscopy. Journal of the American Ceramic Society, 82(3), 742–748.

    Article  CAS  Google Scholar 

  23. Costantinide, G., & Ulm, F. (2006). The nanogranular nature of C–S–H. Journal of Mechanics and Physics of Solids, 55(1), 64–90.

    Article  Google Scholar 

  24. Gelb, L. D., & Gubbins, K. E. (1998). Characterization of porous glass: Simulation models, adsorption isotherms, and the Brunauer–Emmett–Teller analysis method. Langmuir, 14, 2097–2111.

    Article  CAS  Google Scholar 

  25. Cormack, A., & Du, J. (2001). Molecular dynamics simulations of soda-lime-silicate glasses. Journal of Non-Crystalline Solids, 283–289.

    Google Scholar 

  26. Mead, R. N., & Mountjoy, G. (2006). A molecular dynamics study of the atomic structure of (CaO)x(SiO2)1−x glasses. Journal of Physical Chemistry, 110(29), 273–278.

    Google Scholar 

  27. Grimley, D. I., Wright, A. C., & Sinclair, R. N. (1990). Neutron scattering from vitreous silica IV. Time-of-flight diffraction. Journal of Non-Crystalline Solids, 119(1), 49–64.

    Article  CAS  Google Scholar 

  28. Mastelaro, V. R., Zanotto, E. D., Lequeux, N., & Cortes, R. J. (2000). Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses. Journal of Non-Crystalline Solids, 262(1–3), 191–199.

    Article  CAS  Google Scholar 

  29. Pellenq, R. J. M., Lequeux, N., & Damme, H. V. (2008). Engineering the bonding scheme in C–S–H: The iono-covalent framework. Cement and Concrete Research, 38(2), 159–174.

    Article  CAS  Google Scholar 

  30. Feuston, B. P., & Garofalini, S. H. (1990). Oligomerization in silica sols. Journal of Physics and Chemistry, 94(13), 5351–5356.

    Article  CAS  Google Scholar 

  31. Shahsavari, R., Buechler, M. J., Pellenq, R. J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of American Ceramic Society, 92(10), 2323–2330.

    Google Scholar 

  32. Zhu, T., Li, J., Lin, X., & Yip, S. (2007). Stress-dependent molecular pathways of silica–water reaction. Journal of Mechanics and Physics of Solids, 53(7), 1597–1623.

    Article  Google Scholar 

  33. Cong, X., & Kirkpatrick, R. (1996). 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrate. Advances in Cement Based Materials, 3, 133–143.

    Article  CAS  Google Scholar 

  34. Chen, J. J., Thomas, J. J., Taylor, H. F. W., & Jennings, H. M. (2004). Solubility and structure of calcium silicate hydrate. Cement and Concrete Research, 34, 1499–1519.

    Article  CAS  Google Scholar 

  35. Powers, T. C., & Brownyard, L. (1946–1947). Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, 43.

    Google Scholar 

  36. Feldman, R. F., & Sereda, P. J. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction, 1(6), 509–520.

    Google Scholar 

  37. Kumar, R., Schmidt, J. R., & Skinner, J. L. (2007). Hydrogen bonding definitions and dynamics in liquid water. The Journal of Chemical Physics, 126(20), 204107.

    Article  CAS  Google Scholar 

  38. Pelisser, F., Gleize, P. J. P., & Mikowski, A. (2012). Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic C–S–H measured by nanoindentation. The Journal of Physical Chemistry C, 116(32), 17219–17227.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongshuai Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, D. (2020). Modeling the Calcium Silicate Hydrate by Molecular Simulation. In: Molecular Simulation on Cement-Based Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8711-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8711-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8710-4

  • Online ISBN: 978-981-13-8711-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics