Skip to main content

Introduction to Modeling of Cement Hydrate at Nanoscale

  • Chapter
  • First Online:
Book cover Molecular Simulation on Cement-Based Materials
  • 825 Accesses

Abstract

The general background on the cement hydrate is introduced in this chapter. The characteristics of the C–S–H gel obtained by various experimental techniques are summarized firstly. This chapter also emphasizes on a series of theoretical models of C–S–H gel at nanoscale. Both the experimental and theoretical information provide the foundation for C–S–H model construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, L. (2012). The structure study of calcium silicate hydrate (C–S–H) (QE report). Hong Kong University of Science and Technology.

    Google Scholar 

  2. Taylor, H. F. W. (1997). Cement chemistry. London: Academic Press.

    Book  Google Scholar 

  3. Bishop, M., Bott, S. G., & Barron, A. R. (2003). A new mechanism for cement hydration inhibition: Solid-state chemistry of calcium nitrilotris(methylene)triphosphonate. Chemistry of Materials, 15(16), 3074–3088.

    Google Scholar 

  4. Groves, G. W. (1986). TEM studies of cement hydration. MRS Online Proceeding Library Archive, 85.

    Google Scholar 

  5. Nomat, A. (2004). The structure and stoichiometry of C–S–H. Cement and Concrete Research, 34, 1521–1528.

    Article  Google Scholar 

  6. Costantinide, G., & Ulm, F. (2006). The nanogranular nature of C–S–H. Journal of Mechanics and Physics of Solids, 55, 64–90.

    Article  Google Scholar 

  7. Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium silicate hydrate in cement. Nature Material, 6, 311–316.

    Article  CAS  Google Scholar 

  8. Richardson, I. J. (1999). The nature of C–S–H in hardened cements. Cement and Concrete Research, 29(8), 1131–1147.

    Article  CAS  Google Scholar 

  9. Richardson, I. G., & Groves, G. W. (1993). Microstructure and microanalysis of hardened ordinary Portland cement pastes. Journal of Material Science, 28, 265–277.

    Google Scholar 

  10. Hou, D., Ma, H., Zhu, Y., & Li, Z. (2014). Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties. Acta Materialia, 67, 81–94.

    Article  CAS  Google Scholar 

  11. Hou, D. S., & Li, Z. J. (2014). Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: Case study of jennite. Journal of Materials in Civil Engineering, 26(5).

    Google Scholar 

  12. Ma, H., & Li, Z. (2013). Realistic pore structure of Portland cement paste: Experimental study and numerical simulation. Computer and Concrete, 11(4), 317–336.

    Article  Google Scholar 

  13. Wang, P. S., Ferguson, M. M., Eng, G., Bentz, D. P., Ferraris, C. F., & Clifton, J. R. (1998). 1H nuclear magnetic resonance characterization of Portland cement: Molecular diffusion of water studied by spin relaxation and relaxation time-weighted imaging. Journal of Material Science, 33, 3065–3071.

    Article  CAS  Google Scholar 

  14. Rakiewicz, E. F., Benesi, A. J., Grutzeck, M. W., & Kwan, S. (1998). Determination of the state of water in hydrated cement phases using deuterium NMR spectroscopy. Journal of the American Chemical Society, 120(25), 6415–6416.

    Article  CAS  Google Scholar 

  15. Greener, J., Peemoeller, H., Choi, C., Holly, R., Reardon, E. J., Hansson, C. M., et al. (2000). Monitoring of hydration of white cement paste with proton NMR spin–spin relaxation. Journal of the American Ceramic Society, 83(3), 623–627.

    Article  Google Scholar 

  16. Bordallo, H. N., Aldridge, L. P., & Desmedt, A. (2006). Water dynamics in hardened ordinary Portland cement paste or concrete: From quasielastic neutron scattering. Journal of Physics and Chemistry B, 110, 17966–17976.

    Article  CAS  Google Scholar 

  17. Korb, J. P., Monteilhet, L., McDonald, P. J., & Mitchell, J. (2007). Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach. Cement and Concrete Research, 37(3), 295–302.

    Article  CAS  Google Scholar 

  18. Brunauer, S., Kantro, D. L., & Copeland, L. E. (1958). The stoichiometry of the hydration of β-dicalcium silicate and tricalcium silicate at room temperature. Journal of the American Chemical Society, 80(4), 761–767.

    Article  CAS  Google Scholar 

  19. Jennings, H. M. (2008). Refinements to colloid model of C–S–H in cement: CM II. Cement and Concrete Research, 38(3), 275–289.

    Article  CAS  Google Scholar 

  20. Hamid, S. (1981). The crystal structure of the 11 A natural tobermorite Ca2.25Si3O7.5(OH)1.5·H2O. Zeitschrifit fur Kristallographie, 154, 189–198.

    Google Scholar 

  21. Garbev, K., Bornefeld, M., Beuchle, G., & Stemmermann, P. (2008). Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 2: X-ray and thermogravimetry study. Journal of the American Ceramic Society, 91(9), 3015–3023.

    Google Scholar 

  22. Garbev, K., Beuchle, G., Bornefeld, M., Black, L., & Stemmermann, P. (2008). Cell dimensions and composition of nanocrystalline calcium silicate hydrate solid solutions. Part 1: Synchrotron-based X-ray diffraction. Journal of the American Ceramic Society, 91(9), 3005–3014.

    Google Scholar 

  23. Renaudin, G., Russias, J., Leroux, F., Cau-dit-Coumes, C., & Frizon, F. (2009). Structural characterization of C–S–H and C–A–S–H samples—Part II: Local environment investigated by spectroscopic analyses. Journal of Solid State Chemistry, 182(12), 3320–3329.

    Article  CAS  Google Scholar 

  24. Gmira, A. (2003). Etude texturale et thermodynamique d’hydrates modèles du ciment. Orléans.

    Google Scholar 

  25. Grangeon, S., Claret, F., Lerouge, C., Warmont, F., Sato, T., Anraku, S., et al. (2013). On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite. Cement and Concrete Research, 52, 31–37.

    Article  CAS  Google Scholar 

  26. Alizadeh, R., Raki, L., Makar, J. M., Beaudoin, J. J., & Moudrakovski, I. (2009). Hydration of tricalcium silicate in the presence of synthetic calcium–silicate–hydrate. Journal of Materials Chemistry, 19(42), 7937–7946.

    Article  CAS  Google Scholar 

  27. Cong, X., & Kirkpatrick, R. J. (1995). Effects of the temperature and relative humidity on the structure of C–S–H gel. Cement and Concrete Research, 25(6), 1237–1245.

    Article  Google Scholar 

  28. Gmira, A. (2003). Etude textural et thermodynamique d’hydrates modeles du ciment. Ph.D. thesis, Universite D Orieans, France.

    Google Scholar 

  29. Grangeon, S., Claret, F., Linard, Y., & Chiaberge, C. (2013). X-ray diffraction: A powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallographica Section B: Structural Science Crystal Engineering.

    Google Scholar 

  30. Minet, J., Abramson, S., Bresson, B., Sanchez, C., Montouillout, V., & Lequeux, N. (2004). New layered calcium organosilicate hybrids with covalently linked organic functionalities. Chemistry of Materials, 16(20), 3955–3962.

    Article  CAS  Google Scholar 

  31. Minet, J., Abramson, S., Bresson, B., Franceschini, A., Van Damme, H., & Lequeux, N. (2006). Organic calcium silicate hydrate hybrids: A new approach to cement based nanocomposites. Journal of Materials Chemistry, 16(14), 1379–1383.

    Article  CAS  Google Scholar 

  32. Stumm, A., Garbev, K., Beuchle, G., Black, L., Stemmermann, P., & Nüesch, R. (2005). Incorporation of zinc into calcium silicate hydrates. Part I: Formation of CSH (I) with C/S = 2/3 and its isochemical counterpart gyrolite. Cement and Concrete Research, 35(9), 1665–1675.

    Article  CAS  Google Scholar 

  33. Sugiyama, T., Ritthichauy, W., & Tsuji, Y. (2008). Experimental investigation and numerical modeling of chloride penetration and calcium dissolution in saturated concrete. Cement and Concrete Research, 38(1), 49–67.

    Article  CAS  Google Scholar 

  34. García-Lodeiro, I., Fernández-Jiménez, A., Sobrados, I., Sanz, J., & Palomo, A. (2012). C–S–H gels: Interpretation of 29Si MAS-NMR Spectra. Journal of the American Ceramic Society, 95(4), 1551–2916.

    Article  Google Scholar 

  35. Chen, J. J., Thomas, J. J., Taylor, H. F. W., & Jennings, H. M. (2004). Solubility and structure of calcium silicate hydrate. Cement and Concrete Research, 34(9), 1499–1519.

    Article  CAS  Google Scholar 

  36. Cong, X., & Kirkpatrick, R. (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Material, 3(3–4), 144–156.

    Article  CAS  Google Scholar 

  37. Macphee, D. E., Lachowski, E. E., & Glasser, F. P. (1998). Polymerization effects in C–S–H: Implications for Portland cement hydration. Advances in Cement Research, 1(3), 131–137.

    Article  Google Scholar 

  38. Alizadeh, R. A. (2009). Nanostructure and engineering properties of basic and modified calcium silicate hydrate systems. Ph.D. thesis of University of Ottawa.

    Google Scholar 

  39. Pellenq, R. J. M., Kushima, A., Shahsavari, R., Van Vliet, K. J., Buehler, M. J., & Yip, S. (2009). A realistic molecular model of cement hydrates. PNAS, 106(38), 16102–16107.

    Article  CAS  Google Scholar 

  40. Groves, G. (1987). TEM studies of cement hydration. Materials Research Society Symposium Proceedings, 85, 3–12.

    Article  CAS  Google Scholar 

  41. Bonaccorsi, E., Merlino, S., & Taylor, H. F. W. (2004). The crystal structure of Jennite Ca9Si6O18(OH)6·8H2O. Cement and Concrete Research, 34(9), 1481–1488.

    Article  CAS  Google Scholar 

  42. Shahsavari, R., Buechler, M. J., Pellenq, R. J. M., & Ulm, F. J. (2009). First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite. Journal of American Ceramic Society, 92(10), 2323–2330.

    Article  CAS  Google Scholar 

  43. Merlino, S., Bonnacorsi, E., & Armbruster, T. (2001). The real structure of tobermorite 11 A: Normal and anomalous forms, OD character and polytypic modifications. European Journal of Mineralogy, 13(3), 577–590.

    Article  CAS  Google Scholar 

  44. Aligizaki, K. K. (2006). Pore structure of cement-based materials: Testing, interpretation and requirements. CRC Press.

    Google Scholar 

  45. Powers, T. C., & Brownyard, L. (1946). Studies of the physical properties of hardened Portland cement paste. ACI Journal Proceedings, 43.

    Google Scholar 

  46. Feldman, R. F., & Sereda, J. P. (1968). A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Matériaux et Construction, 1(6), 509–520.

    Google Scholar 

  47. Wittmann, F. H. (1979). Trends in research on creep and shrinkage of concrete. Cement Production and Use, 143–161.

    Google Scholar 

  48. Jennings, H. (2000). A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 30, 101–116.

    Article  CAS  Google Scholar 

  49. Costantinides, G., & Ulm, F. (2004). The effect of two types of C–S–H on the elasticity of cement-based materials: Result from nanoindentation and micromechanical modeling. Cement and Concrete Research, 34, 67–80.

    Article  Google Scholar 

  50. Bernal, J. D., Jeffery, J. W., & Taylor, H. F. W. (1952). Crystallographic research on the hydration of Portland cement. A first report on investigations in progress. Magazine of Concrete Research, 4(11), 49–54.

    Google Scholar 

  51. Taylor, H. F. W., & Howison, J. W. (1956). Relationships between calcium silicates and clay minerals. Clay Minerals Bulletin, 3, 98–111.

    Article  CAS  Google Scholar 

  52. Kantro, D. L., Brunauer, S., & Weise, C. H. (1962). Development of surface in the hydration of calcium silicates. II. Extension of investigations to earlier and later stages of hydration. The Journal of Physical Chemistry, 66(10), 1804–1809.

    Google Scholar 

  53. Stade, H. (1980). On the structure of ill-crystallized calcium hydrogen silicates. 2. A phase consisting of polysilicate and disilicate. Zeitschrift fur Anorganische und Allgemeine Chemie, 470(11), 69–83.

    Google Scholar 

  54. Cong, X., & Kirkpatrick, R. J. (1996). 29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrate. Advances in Cement Based Materials, 3(3), 133–143.

    Article  CAS  Google Scholar 

  55. Grutzeck, M. W. (1999). A new model for the formation of calcium silicate hydrate (CSH). Material Research Innovations, 3(3), 160–170.

    Article  CAS  Google Scholar 

  56. Viehland, D., Yuan, L. J., Xu, Z., Cong, X. D., & Kirkpatrick, R. J. (1997). Structural studies of jennite and 1.4 nm tobermorite: Disordered layering along the [100] of jennite. Journal of the American Ceramic Society, 80(12), 3021–3028.

    Google Scholar 

  57. Taylor, H. F. (1986). Proposed structure for calcium silicate hydrate gel. Journal of the American Ceramic Society, 69(6), 464–467.

    Article  CAS  Google Scholar 

  58. Richardson, I. G. (2004). Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, h-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol. Cement and Concrete Research, 34(9), 1733–1777.

    Article  CAS  Google Scholar 

  59. Bonnaud, P. A., Ji, Q., Coasne, B., Pellenq, R. J. M., & Van Vliet, K. J. (2012). Thermodynamics of water confined porous calcium silicate hydrate. Langmuir, 28(31), 11422–11432.

    Article  CAS  Google Scholar 

  60. Manzano, H., Moeini, S., Marinelli, F., van Duin, A. C. T., Ulm, F. J., & Pellenq, R. J. M. (2011). Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties. Journal of the American Chemistry Society, 134(4), 2208–2215.

    Article  Google Scholar 

  61. Manzano, H., Masoero, E., Arbeloa, I. L., & Jennings, H. M. (2013). Molecular modelling of shear deformations in ordered and disordered calcium silicate hydrates. Soft Matter, 9(30), 7333–7341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongshuai Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, D. (2020). Introduction to Modeling of Cement Hydrate at Nanoscale. In: Molecular Simulation on Cement-Based Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-8711-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8711-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8710-4

  • Online ISBN: 978-981-13-8711-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics