Skip to main content

Defect-Induced Discontinuous Effects in Graphene Nanoribbon Under Torsion Loading

  • Chapter
  • First Online:
Book cover Nanomechanics of Graphene and Design of Graphene Composites

Part of the book series: Springer Theses ((Springer Theses))

  • 487 Accesses

Abstract

Defects are ubiquitous in graphene monolayer, which are considered as the foundation of the design of graphene and graphene composites. In addition, defects may induce discontinuous effects for the mechanical behaviors of graphene. In this chapter, the defect technology of graphene is reviewed and discussed. The mechanical behaviors of graphene nanoribbon under torsion loading, which is a representative case including both the static and dynamic out-of-plane deformation, is analyzed to reveal the discontinuous effects induced by defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferreira A, Xu X, Tan CL, Bae SK, Peres N, Hong BH, Özyilmaz B, Neto AC (2011) Europhys Lett 94(2):28003

    Article  Google Scholar 

  2. Grantab R, Shenoy VB, Ruoff RS (2010) Science 330(6006):946

    Article  CAS  Google Scholar 

  3. Carlsson JM, Scheffler M (2006) Phys Rev Lett 96(4):046806

    Article  Google Scholar 

  4. Santos EJ, Sánchez-Portal D, Ayuela A (2010) Phys Rev B 81(12):125433

    Article  Google Scholar 

  5. Khurana G, Kumar N, Kotnala R, Nautiyal T, Katiyar R (2013) Nanoscale 5(8):3346

    Article  CAS  Google Scholar 

  6. Bell DC, Lemme MC, Stern LA, Williams JR, Marcus CM (2009) Nanotechnology 20(45):455301

    Article  CAS  Google Scholar 

  7. Fischbein MD, Drndić M (2008) Appl Phys Lett 93(11):113107

    Article  Google Scholar 

  8. Zhu W, Wang H, Yang W (2012) Nanoscale 4(15):4555

    Article  CAS  Google Scholar 

  9. Lemme MC, Bell DC, Williams JR, Stern LA, Baugher BW, Jarillo-Herrero P, Marcus CM (2009) ACS Nano 3(9):2674

    Article  CAS  Google Scholar 

  10. Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlogl U, Yang W et al (2011) Nano Lett 12(1):141

    Article  Google Scholar 

  11. Åhlgren E, Kotakoski J, Krasheninnikov A (2011) Phys Rev B 83(11):115424

    Article  Google Scholar 

  12. Krasheninnikov A, Nordlund K (2010) J Appl Phys 107(7):3

    Article  Google Scholar 

  13. Lehtinen O, Kotakoski J, Krasheninnikov A, Tolvanen A, Nordlund K, Keinonen J (2010) Phys Rev B 81(15):153401

    Article  Google Scholar 

  14. Bubin S, Wang B, Pantelides S, Varga K (2012) Phys Rev B 85(23):235435

    Article  Google Scholar 

  15. Gottstein G (2013) Physical foundations of materials science. Springer Science & Business Media

    Google Scholar 

  16. Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M (2012) Nat Mater 11(9):759

    Article  CAS  Google Scholar 

  17. Van Duin AC, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105(41):9396

    Article  Google Scholar 

  18. Han SS, Kang JK, Lee HM, van Duin AC, Goddard WA III (2005) J Chem Phys 123(11):114703

    Article  Google Scholar 

  19. Nielson KD, van Duin AC, Oxgaard J, Deng WQ, Goddard WA (2005) J Phys Chem A 109(3):493

    Article  CAS  Google Scholar 

  20. Järrvi TT, van Duin AC, Nordlund K, Goddard WA III (2011) J Phys Chem A 115(37):10315

    Article  Google Scholar 

  21. Keith JA, Fantauzzi D, Jacob T, van Duin AC (2010) Phys Rev B 81(23):235404

    Article  Google Scholar 

  22. Aryanpour M, van Duin AC, Kubicki JD (2010) J Phys Chem A 114(21):6298

    Article  CAS  Google Scholar 

  23. Chenoweth K, Van Duin AC, Goddard WA (2008) J Phys Chem A 112(5):1040

    Article  CAS  Google Scholar 

  24. Plimpton S (1995) J Comput Phys 117(1):1

    Article  CAS  Google Scholar 

  25. Li J (2003) Modell Simul Mater Sci Eng 11(2):173

    Article  Google Scholar 

  26. Krasheninnikov A, Lehtinen P, Foster AS, Pyykkö P, Nieminen RM (2009) Phys Rev Lett 102(12):126807

    Article  CAS  Google Scholar 

  27. Gunlycke D, Li J, Mintmire JW, White CT (2010) Nano Lett 10(9):3638

    Article  CAS  Google Scholar 

  28. Li Y, Jiang X, Liu Z, Liu Z (2010) Nano Res 3(8):545

    Article  CAS  Google Scholar 

  29. Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phys 112(14):6472

    Article  CAS  Google Scholar 

  30. Jia J, Shi D, Feng X, Chen G (2014) Carbon 76:54

    Article  CAS  Google Scholar 

  31. Humphrey W, Dalke A, Schulten K (1996) J Mol Gr 14(1):33

    Article  CAS  Google Scholar 

  32. Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates T et al (2011) Psychometrika 76(2):306

    Article  Google Scholar 

  33. Caroli C, Combescot R, Nozieres P, Saint-James D (1971) J Phys C: Solid State Phys 4(8):916

    Article  Google Scholar 

  34. Ceperley DM, Alder B (1980) Phys Rev Lett 45(7):566

    Article  CAS  Google Scholar 

  35. Ozaki T (2003) Phys Rev B 67(15):155108

    Article  Google Scholar 

  36. Cranford S, Buehler MJ (2011) Modell Simul Mater Sci Eng 19(5):054003

    Article  Google Scholar 

  37. Kit O, Tallinen T, Mahadevan L, Timonen J, Koskinen P (2012) Phys Rev B 85(8):085428

    Article  Google Scholar 

  38. Son YW, Cohen ML, Louie SG (2006) Phys Rev Lett 97(21):216803

    Article  Google Scholar 

  39. Sadrzadeh A, Hua M, Yakobson BI (2011) Appl Phys Lett 99(1):013102

    Article  Google Scholar 

  40. Cerda E, Ravi-Chandar K, Mahadevan L (2002) Nature 419(6907):579

    Article  CAS  Google Scholar 

  41. Zhao H, Min K, Aluru N (2009) Nano Lett 9(8):3012

    Article  CAS  Google Scholar 

  42. Yi L, Yin Z, Zhang Y, Chang T (2013) Carbon 51:373

    Article  CAS  Google Scholar 

  43. Mucciolo ER, Neto AC, Lewenkopf CH (2009) Phys Rev B 79(7):075407

    Article  Google Scholar 

  44. Zou D, Cui B, Kong X, Zhao W, Zhao J, Liu D (2015) Phys Chem Chem Phys 17(17):11292

    Article  CAS  Google Scholar 

  45. Motta C, Sánchez-Portal D, Trioni M (2012) Phys Chem Chem Phys 14(30):10683

    Article  CAS  Google Scholar 

  46. Moraes Diniz E (2014) Appl Phys Lett 104(8):083119

    Article  Google Scholar 

  47. Lin YT, Chung HC, Yang PH, Lin SY, Lin MF (2015) Phys Chem Chem Phys 17(25):16545

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X. (2019). Defect-Induced Discontinuous Effects in Graphene Nanoribbon Under Torsion Loading. In: Nanomechanics of Graphene and Design of Graphene Composites. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-8703-6_5

Download citation

Publish with us

Policies and ethics