A Multi-agent Model for Cell Population

  • Fernando Arroyo
  • Victor MitranaEmail author
  • Andrei Păun
  • Mihaela Păun
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 148)


An intriguing problem in computer science is the formal description of dynamics in cell populations. We propose here a multi-agent-based model that could be used in this respect. The model proposed in this paper consists of biological entities (cells) as agents and a biochemical environment. Both are represented by multisets of symbols. The environment evolution is regulated by multiset Lindenmayer rules depending on the current state of all agents, while the evolution of each agent, which depends on the environment current state, is defined by means of multiset patterns. We discuss some algorithmic problems related to the dynamics of the proposed multi-agent model: infinite and stationary evolution, environment, and agent reachability.


Multiset Multiset L-rule Multiset pattern Cell population Multi-agent system 



Work supported by a grant of the Romanian National Authority for Scientific Research and Innovation, project number POC P-37-257.


  1. 1.
    Amigoni, F.: Multiagent-Based Simulation in Biology A Critical Analysis. Studies in Computational Intelligence, vol. 64, pp. 179–191. Springer, Berlin (2009)Google Scholar
  2. 2.
    Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Csuhaj-Varjú, E., Martín-Vide, C., Mitrana, V.: Multiset automata. In: Proceedings of the Workshop on Multiset Processing, LNCS 2235, pp. 69–84. Springer, Berlin (2000)Google Scholar
  4. 4.
    Dassow, J.: A note on programmed 0L systems. Information Sciences 30, 1–4 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hachem Kermani, M., Boufaida, Z.: A modeling of a multi-agent system for the protein synthesis. In: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications, pp. 1–7. IEEE Computer Society (2015)Google Scholar
  6. 6.
    Helm, R., Marriott, K., Odersky, M.: Building visual language parsers. In: Proceedings of CHI ’91, pp. 105–112. ACM (1991)Google Scholar
  7. 7.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. Int. J. Comput. Math. 50, 147–163 (1994)CrossRefGoogle Scholar
  8. 8.
    Langton, C.G. (ed.): Artificial Life. Santa Fe Institute Studies in the Science of Complexity, Proceeding, vol. VI. Addison-Wesley, Boston (1989)Google Scholar
  9. 9.
    Lindenmayer, A.: Mathematical models for cellular interaction in development. J. Theoret. Biol. 18, 280–315 (1968)CrossRefGoogle Scholar
  10. 10.
    Marriott, K.: Constraint multiset grammars. In: Proceedings of VL’94, pp. 118–125. IEEE Computer Society (1994)Google Scholar
  11. 11.
    Mitrana, V., Păun, Gh, Rozenberg, G., Salomaa, A.: Pattern systems. Theor. Comput. Sci. 154, 183–201 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Niazi, M., Hussain, A.: Agent-based computing from multi-agent systems to agent-based models: a visual survey. Scientometrics 89, 479–499 (2011)CrossRefGoogle Scholar
  13. 13.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Berlin (1996)zbMATHGoogle Scholar
  14. 14.
    Prusinkiewicz, P., Hanan, J.: Lindenmayer Systems, Fractal, and Plants. Springer, New York (1989)CrossRefGoogle Scholar
  15. 15.
    Rodin, V., Querrec, G., Ballet, P., Bataille, F.R., Desmeulles, G., Abgrall, J.F., Tisseau, J.: Multi-agents system to model cell signalling by using fuzzy cognitive maps. Application to computer simulation of multiple myeloma. In: 2009 Ninth IEEE International Conference on Bioinformatics and BioEngineering, pp. 236–241. IEEE Computer Society (2009)Google Scholar
  16. 16.
    Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic Press, Cambridge (1980)zbMATHGoogle Scholar
  17. 17.
    Rozenberg, G., Salomaa, A.: Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology. Springer, Berlin (2001)zbMATHGoogle Scholar
  18. 18.
    Suzuki, Y., Tanaka, H.: Symbolic chemical system based on abstract rewriting system and its behavior pattern. Artif. Life Robot. 1, 211–219 (1997)CrossRefGoogle Scholar
  19. 19.
    Suzuki, Y., Tanaka, H.: Chemical evolution among artificial proto-cells. Artif. Life 7, 54–63 (2000)Google Scholar
  20. 20.
    Weyns, D. et al.: Environments for multiagent systems state-of-the-art and research challenges. In Proceedings of E4MAS 2004, LNAI 3374, pp. 1–47. Springer, Berlin (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Fernando Arroyo
    • 1
  • Victor Mitrana
    • 1
    • 2
    Email author
  • Andrei Păun
    • 2
    • 3
  • Mihaela Păun
    • 2
    • 4
  1. 1.Department of Information SystemsPolytechnic University of MadridMadridSpain
  2. 2.National Institute for Research and Development of Biological SciencesBucharestRomania
  3. 3.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  4. 4.Faculty of Administration and BusinessUniversity of BucharestBucharestRomania

Personalised recommendations