Comparative Study of Bio-Inspired Algorithms Applied to Illumination Optimization in an Ambient Intelligent Environment

  • Wendoly J. Gpe. Romero-RodriguezEmail author
  • Rosario Baltazar
  • Victor Zamudio
  • Miguel Casillas
  • Arnulfo Alaniz
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 148)


One of the primary concerns of humanity today is developing strategies for saving energy and promoting environmental sustainability. This paper suggests the development of an intelligent Internet of Things based system with the use of meta-heuristics that will be able to find optimal energy saving configurations. This system takes into account the activity of the users, size of area, state of lights, and blinds. A comparative study of four optimization techniques (GA, PSO, DBDE, and BSO) with the use of the Friedman test is shown.


IoT (Internet of things) Ambient intelligence Energy management Bio-inspired optimization Control illumination 



This work is supported by the Instituto Tecnológico de León. The authors want to acknowledge the generous support by the Consejo Nacional de Ciencia y Tecnología (CONACyT) for this research project.


  1. 1.
    Friess, P.: Internet of Things-global Technological and Societal Trendsfrom Smart Environments and Spaces to Green ICT. River Publishers (2011)Google Scholar
  2. 2.
    Doctor, F., Hagras, H., Callaghan, V.: An intelligent fuzzy agent approach for Realising ambient intelligence in intelligent inhabited environments. IEEE Trans. Syst., Man Cybern., Part A: Syst. Humans 55–65 (2005)Google Scholar
  3. 3.
    Sulaiman, F., Ahmad, A., Kamarulzaman, M.S.: âce Automated Fuzzy LogicLight Balanced Control Algorithm Implemented in Passive Optical FiberDay lighting System. In: At AIML6 (2006)Google Scholar
  4. 4.
    Wang, Z., Wang, Y.: âce Design of intelligent residential light-ing control system based on zigbee wireless sensor network and fuzzy con-trollerâ. In: 2010International Conference on Machine Vision and Human-Machine Interface (MVHI), pp. 561–564 (2010)Google Scholar
  5. 5.
    Miki, M., et al.: Intelligent lighting control using correlation coefficient between luminance and illuminance. Proc. IASTED Intell. Syst. Control. 497(078), 31–36 (2005)Google Scholar
  6. 6.
    Pandharipande, A., Caicedo, D.: Adaptive illumination rendering in LED lighting systems. IEEE Trans. Syst., Man, Cybern.: Syst. 1052–1062 (2013)CrossRefGoogle Scholar
  7. 7.
    Pan, M.-S., et al.: A WSN-based intelligent light control system considering user activities and proles. IEEE Sens. J. 8(10), 1710–1721 (2008)CrossRefGoogle Scholar
  8. 8.
    Caicedo, D., Pandharipande, A.: Distributed illumination control with local sensing and actuation in networked lighting systems. IEEE Sens. J. 13(3), 1092–1104 (2013)CrossRefGoogle Scholar
  9. 9.
    Romero-Rodriguez, W.J.G. et al.: Comparative study of BSO and GA for the optimizing energy in ambient intelligence. In: Mexican International Conference on Artificial Intelligence, pp. 177-188. Springer, Berlin (2011)CrossRefGoogle Scholar
  10. 10.
    Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. Citeseer (1995)Google Scholar
  11. 11.
    Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Elsevier (2001)Google Scholar
  12. 12.
    Pham, D.T. et al.: The bees algorithm a novel tool for complex optimisation problems. In: Intelligent Production Machines and Systems, pp. 454–459. Elsevier (2006)Google Scholar
  13. 13.
    Sampson, J.R.: Adaptation in natural and artificial systems (John H. Holland). In: Society for Industrial and Applied Mathematics (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mexicana, N.: NOM-025-STPS-2008. In: Condiciones de iluminacion en los centros de trabajo (2008)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto Tecnológico de LeónLeónMéxico
  2. 2.Instituto Tecnológico de TijuanaTijuanaMéxico

Personalised recommendations