Advertisement

Use of Intelligent Agent Through Low-Cost Brain–Computer Interface to Analyze Attention and Meditation Levels by Gender

  • Bladimir SernaEmail author
  • Rosario Baltazar
  • Pedro Cruz-Parada
  • Jorge Meza
  • Juan Manríquez
  • Víctor Zamudio
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 148)

Abstract

The realization of activities in daily life can generate cognitive processes such as paying attention and having meditation to what is done, and with the use of these abilities, it is sought to obtain better results or to carry out the desired activity of the best possible way. Although people have the same capacities, there are activities where there may be differences between men and women or vice versa, for this reason, it is important to consider through gender, what are the attention level and the level of meditation presented during the performance of a specific activity. With this information, clustering of the elements is applied to visualize different levels and how it behaves in each gender, as well as in general.

Keywords

EEG (Electroencephalogram) Mindflex Attention Meditation Intelligent agent Brain–computer interfaces 

References

  1. 1.
    Sanchez Hernández, M.: La musicoterapia (2010)Google Scholar
  2. 2.
    Alonso Brull, V., del Mar Bernabé Villodre, M., Bermell Corral, M.A.: La optimización de la atención a través de la música cinematográfica: prácticas en Educación Secundaria Obligatoria (2015)Google Scholar
  3. 3.
    Gekkonidae, S., Tanalgo, K.C., Hughes, A.C.: “First evidence of nectarivory by four-clawed gecko , Gehyra mutilata First evidence of nectarivory by four-clawed gecko, Gehyra mutilata (Wiegmann, 1834) (Squamata: Gekkonidae) on a bat- pollinated Calabash tree ( Crescentia cujete L.) (Bignonia”, pp. 1–9 (2017))Google Scholar
  4. 4.
    Marconato, C., Munhoz, E.C., et al.: Application of Receptive Music Therapy in Internal Medicine and Cardiology (2001)Google Scholar
  5. 5.
    Mérida, M. et al.: Atención-concentración como entrenamiento para la mejora del rendimiento deportivo en jugadores profesionales de fútbol. https://ddd.uab.cat/record/63156 (2010)
  6. 6.
    Sanchez Hernández, M.: Cómo mejorar el rendimiento escolar a través de la atención y concentración en niños de tercer grado de primaria: guía para maestros (2009)Google Scholar
  7. 7.
    Lutz, A. et al.: Attention regulation and monitoring in meditation. Trends Cogn. Sci. 12(4), 163–169 (2008). ISSN: 1364–6613.,  https://doi.org/10.1016/j.tics.2008.01.005, http://www.sciencedirect.com/science/article/pii/S1364661308000521CrossRefGoogle Scholar
  8. 8.
    Rajneesh, B.S.: The Orange Book Meditation and Techniques of Bhagwan Shree Rajneesh (1980)Google Scholar
  9. 9.
    Katona, J. et al.: Evaluation of the NeuroSky MindFlex EEG headset brain waves data. In: 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 91–94 (2014)Google Scholar
  10. 10.
    Knuth, D.: How to Hack Toy EEGs. http://www.frontiernerds.com/brain-hack (2016). Accessed 28 May 2016
  11. 11.
    NeuroSky.: eSense(tm) Meters. http://developer.neurosky.com/docs/doku.php?id=esenses_tm (2016). Accessed 5 May 2016
  12. 12.
    Intel Open Source.: Assistive Context-Aware Toolkit. https://01.org/acat (2016). Accessed 5 May 2016
  13. 13.
    Hadi, S., Sholahuddin, A., Rahmawati, L.: The design and preliminary implementation of low-cost brain-computer interface for enable moving of rolling robot. In: 2016 International Conference on Informatics and Computing (ICIC), pp. 283–287 (2016)Google Scholar
  14. 14.
    Gersak, G. et al.: Psychophysiological evaluation of a simple EEG device/Psiho ziolosko ovrednotenje preproste EEG-naprave. Elektrotehniski Vestnik 82(5), 277 (2015)Google Scholar
  15. 15.
    Ngo, C.-W., Zhao, W.-L., Deng, C.-H.: k-means: A revisit (2018)Google Scholar
  16. 16.
    Bishop, C.M.: In: Patter Recognition and Machine Learning (2006)Google Scholar
  17. 17.
    Carino-Escobar, R., et al.: Decodificación de imaginación motora en la señal de electroencefalografía mediante mapas auto-organizados. In: Revista del Centro de Investigación (2016)Google Scholar
  18. 18.
    Towle, V.L., et al.: The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto Tecnológico de LeónLeón, GuanajuatoMexico

Personalised recommendations