Advertisement

Multi-agent Complex System for Identification of Characteristics and Personality Types and Their Relationship in the Process of Motivation of Students

  • Margarita Ramírez RamírezEmail author
  • Felipe Lara Rosano
  • Ricardo Fernando Rosales Cisneros
  • Esperanza Manrique Rojas
  • Hilda Beatriz Ramírez Moreno
  • Gonzalo Maldonado Guzmán
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 148)

Abstract

This paper presents a proposal design of multi-agent complex system for the identification of the characteristics and the types of personality of university students as well as their relationship in the process of motivation for them. Diagnosis and identification of personality types are based on the analysis of knowledge base and the collected information of students with concrete actions that agents through their communication skills and interaction with the rules and standards defined receive, analyze, and determine the identification of outstanding personality type and the most important motivating factors according to the identified personality.

Keywords

Multi-agent systems Complex systems Personality 

References

  1. 1.
    Martínez, D.: El yo y la maquina: cerebro, mente e inteligencia artificial España: Ediciones palabra (2012)Google Scholar
  2. 2.
    Robbins, P., Stephen, J.A.T.: Comportamiento Organizacional. Pearson (2013)Google Scholar
  3. 3.
    Bayne, Rowan: The Myers-Briggs Type Indicator. Nelson Thornes, London, UK (1997)Google Scholar
  4. 4.
  5. 5.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)CrossRefGoogle Scholar
  6. 6.
    Rosales, R., Gutiérrez, S., Torres, J.: La interdisciplina en las ciencias sociales Ixtapalapa. Anthropos, Mexico (2006)Google Scholar
  7. 7.
    Lara-Rosano, F.J., Gallardo, C.A., Almnza, M.S.: Teorías, métodos y modelos para la complejidad social: Un enfoque de sistemas complejos Adaptativos, Colofon (2018)Google Scholar
  8. 8.
  9. 9.
  10. 10.
    Ramírez, M.R., Moreno, H.B.R., Millán, N.C.O., (…), Núñez, S.O.V., Garza, A.A.: In: Chen, Y.-W. et al. (eds.) Big Data and Health “clinical records” Smart Innovation, Systems and Technologies, vol. 71, pp. 12–18. Springer International Publishing AG 2018 (2018)Google Scholar
  11. 11.
    Moreno, H., Velázquez, R.A.: La sociedad del conocimiento: Inclusión o exclusión. Recuperado de (2012). http://www.redalyc.org/articulo.oa?id=44024857006
  12. 12.
    Sycara, K.P., Roth, S.F., Sadeh, N., Fox, M.S.: In: Zweben, M., Fox, M.S. (eds.) Resource Allocation in Distributed Factory Scheduling. Intelligent Scheduling, pp. 29–40. Morgan Kaufman Publishers, San Francisco, CA. (http://www.cs.cmu.edu/afs/cs/user/katia/www/katia-home.html) (1991). Accessed 06 Feb 2018
  13. 13.
    Jiménez, J.: Un Modelo de Planificación Instruccional usando razonamiento Basado en Casos en Sistemas Multi-agente para entornos integrados de Sistemas Tutoriales Inteligentes y Ambientes Colaborativos de Aprendizaje. Tesis Doctoral. Universidad Nacional de Colombia (2006)Google Scholar
  14. 14.
    UNAL. Universidad Nacional de Colombia. Inteligencia Artificial Distribuida, Disponible en (2012). http://www.virtual.unal.edu.co/cursos/ingeniería/2001394/docs_curso/contenido.html. Consultado Abril de 2012
  15. 15.
    Zato, Carolina, De Luis, Ana, Bajo, Javier, De Paz, Juan F., Corchado, Juan M.: Dynamic model of distribution and organization of activities in multi-agent systems. Log. J. IGPL 20(3), 570–578 (2012)CrossRefGoogle Scholar
  16. 16.
    Reyes, V,, Rivera, G.M.I.: Prediagnóstico de enfermedades neurológicas a través de un sistema multiagente Ciencias ComputacionalesGoogle Scholar
  17. 17.
    Jennings, N.R.: Commitments and conventions: the foundation of coordination in multi-agent systems. Knowl. Eng. Rev. 8(3), 223–250 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42(2–3), 213–261 (1990)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Rosenschein, J., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation among Computers. MIT Press, Cambridge MA (1994)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Margarita Ramírez Ramírez
    • 1
    Email author
  • Felipe Lara Rosano
    • 2
  • Ricardo Fernando Rosales Cisneros
    • 1
  • Esperanza Manrique Rojas
    • 1
  • Hilda Beatriz Ramírez Moreno
    • 1
  • Gonzalo Maldonado Guzmán
    • 3
  1. 1.Universidad Autónoma de Baja CaliforniaMexicaliMexico
  2. 2.Universidad Autónoma de MéxicoMexico CityMexico
  3. 3.Universidad Autónoma de AguascalientesAguascalientesMexico

Personalised recommendations