Skip to main content

Narrow Gap Welding for Thick Titanium Plates: A Review

  • Conference paper
  • First Online:
Transactions on Intelligent Welding Manufacturing

Part of the book series: Transactions on Intelligent Welding Manufacturing ((TRINWM))

Abstract

Large and thick titanium alloy structures used in aerospace and marine fields need joint integrity to meet the requirements. Welding technology, an important form of joining materials, is crucial for the application and promotion of thick structural components. This paper reviews the issues and challenges in welding thick titanium alloys, introduces the process characteristics of automated welding technologies, and finally provides recommendations for future work. Research indicates that gas tungsten arc welding method with stable welding process is widely used in welding large titanium structures. As a promising alternative to traditional manufacturing method, laser welding with filler wire has been extensively studied in joining thick structure with the characteristics of narrower groove, high welding efficiency and low heat input. The formation mechanism and suppression measures of welding defects such as lack of sidewalls fusion, porosity, weld deformation and microstructural deterioration are discussed. The future work will focus on the welding process control and parameters optimization in automated welding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerhard W, Boyer R, Collings E (1994) Materials properties handbook: titanium alloys. ASM Int USA, pp 13–25

    Google Scholar 

  2. Sun QJ, Wang JF, Cai CW et al (2015) Optimization of magnetic arc oscillation system by using double magnetic pole to TIG narrow gap welding. Int J Adv Manuf Tech 86:761–767

    Article  Google Scholar 

  3. Yu C, Zhang Y, Xu WH et al (2018) Study on magnetically controlled narrow-gap TIG welding of thick plate TC4 titanium alloy. Electric Weld Mach 1:52–56

    Google Scholar 

  4. Cook G, Levick P (1985) Narrow gap welding with the hot wire GTA process. Weld J 64:8–12

    Google Scholar 

  5. Zhan XH, Liu XB, Wei YH et al (2017) Microstructure and property characteristics of thick Invar alloy plate joints using weave bead welding. J Mater Process Tech 244:97–105

    Article  Google Scholar 

  6. Zhao B, Fan CL, Yang CL et al (2008) Procedure of twin-wire narrow gap MAG welding with one molten pool. Weld Join 01:34–37

    Google Scholar 

  7. Murty KL, Miraglia PQ, Mathew MD et al (1999) Characterization of gradients in mechanical properties of SA-533B steel welds using ball indentation. Int J Press Vessels Pip 76:361–369

    Article  Google Scholar 

  8. Fu PF, Mao ZY, Zuo CJ et al (2014) Microstructures and fatigue properties of electron beam welds with beam oscillation for heavy section TC4-DT alloy. Chinese J Aeronaut 27:1015–1021

    Article  Google Scholar 

  9. Wu MY, Xin RL, Wang Y et al (2016) Microstructure, texture and mechanical properties of commercial high-purity thick titanium plates jointed by electron beam welding. Mat Sci Eng A 677:50–57

    Article  Google Scholar 

  10. Yang WX, Xin JJ, Fang C et al (2019) Microstructure and mechanical properties of ultra-narrow gap laser weld joint of 100 mm-thick SUS304 steel plates. J Mater Process Tech 265:130–137

    Article  Google Scholar 

  11. Zhang X, Ashida E, Tarasawa S et al (2011) Welding of thick stainless steel plates up to 50 mm with high brightness lasers. J Laser Appl 23:807–819

    Article  Google Scholar 

  12. Yu YC, Hu XY, Meng XX et al (2013) Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration. J Mech Sci Technol 27:2125–2131

    Article  Google Scholar 

  13. Li RY, Wang TJ, Wang CM et al (2014) A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method. Opt Laser Technol 64:172–183

    Article  Google Scholar 

  14. Guo W, Crowther D, Francis JA et al (2015) Process-parameter interactions in ultra-narrow gap laser welding of high strength steels. Int J Adv Manuf Tech 84:2547–2566

    Article  Google Scholar 

  15. Feng JC, Guo W, Francis JA et al (2016) Narrow gap laser welding for potential nuclear pressure vessel manufacture. J Laser Appl 28:1–6

    Article  Google Scholar 

  16. Yan GG (2018) Research on automatic vertical welding technology of rotating-arc narrow-gap GTAW for 9Ni steel. Dissertation, Shandong University

    Google Scholar 

  17. Wang JY, Ren YS, Yang F et al (2007) Novel rotation arc system for narrow gap MAG welding. Sci Technol Weld Join 12:505–507

    Article  Google Scholar 

  18. Silwal B, Santangelo M (2018) Effect of vibration and hot-wire gas tungsten arc (GTA) on the geometric shape. J Mater Process Tech 251:138–145

    Article  Google Scholar 

  19. Yamazaki Y, Abe Y, Hioki Y et al (2014) Development of narrow gap multi-layer welding process using oscillation laser beam. Weld Int 31(1):38–47

    Article  Google Scholar 

  20. Iqbal S, Gualini MM, Rehman A (2010) Dual beam method for laser welding of galvanized steel: Experimentation and prospects. Opt Laser Technol 42:93–98

    Article  Google Scholar 

  21. Zhang ZH, Dong SY, Wang YJ et al (2016) Study on microstructures and mechanical properties of super narrow gap joints of thick and high strength aluminum alloy plates welded by fiber laser. Int J Adv Manuf Tech 82(1–4):99–109

    Article  Google Scholar 

  22. Uno M, Takahashi K, Maruyama T et al (2004) Hydrogen solubility of BCC titanium alloys. J Alloy Compd 366:213–216

    Article  Google Scholar 

  23. Sinha V, Schwarz RB, Mills MJ et al (2018) Effects of hydrogen on fatigue behavior of near-alpha titanium alloys. Scripta Mater 153:81–85

    Article  Google Scholar 

  24. Cai XY, Fan CL, Lin AB et al (2017) Effects of shielding gas composition on arc properties and wire melting characteristics in narrow gap MAG welding. J Mater Process Tech 244:225–230

    Article  Google Scholar 

  25. Xiao WK, Zhu L, Zhang FJ et al (2015) Effect of heat input on cryogenic toughness of 316LN austenitic stainless steel NG-MAG welding joints with large thickness. Mater Des 86:160–167

    Article  Google Scholar 

  26. Anant R, Ghosh P (2017) Ultra-narrow gap welding of thick section of austenitic stainless steel to HSLA steel. J Mater Process Tech 239:210–221

    Article  Google Scholar 

  27. Wang JY, Zhu J, Fu P et al (2012) A swing arc system for narrow gap GMA welding. ISIJ Int 52:110–114

    Article  Google Scholar 

  28. Han W, Fu L, Chen HY (2018) Effect of groove form on microstructure and properties of TC18 titanium alloy thick plate welded joints. Hot Working Technology 11:51–54

    Google Scholar 

  29. Buddu RK, Chauhan N, Raole PM et al (2014) Mechanical properties and microstructural investigations of TIG welded 40 mm and 60 mm thick SS 316L samples for fusion reactor vacuum vessel applications. Fusion Eng Des 89:3149–3158

    Article  Google Scholar 

  30. Kumar B, Gangradey R (2012) Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications. In: International symposium on vacuum science and technology and its application for accelerators, 390

    Google Scholar 

  31. Hori K, Watanabe H, Myoga T et al (2004) Development of hot wire TIG welding methods using pulsed current to heat filler wire-research on pulse heated hot wire TIG welding processes. Weld Int 18:456–468

    Article  Google Scholar 

  32. Luo J, Luo Q, Lin YH et al (2003) A new approach for fluid flow model in gas tungsten arc weld pool using longitudinal electromagnetic control. Weld J 82:202–206

    Google Scholar 

  33. Sun QJ, Wang JF, Cai CW et al (2016) Optimization of magnetic arc oscillation system by using double magnetic pole to TIG narrow gap welding. Int J Adv Manuf Tech 86:761–767

    Article  Google Scholar 

  34. Tseng C, Savage A (1971) The effect of arc oscillation in either the transverse or longitudinal direction has a beneficial effect on the fusion zone microstructure and tend to reduce sensitivity to hot cracking. Weld J 50:777–785

    Google Scholar 

  35. Lim YC, Yu X, Cho JY et al (2013) Effect of magnetic stirring on grain structure refinement Part 2: Nickel alloy weld overlays. Sci Technol Weld Joi 15:400–406

    Article  Google Scholar 

  36. Kobayashi K, Nishimura Y, Lijima T et al (2013) Practical application of high efficiency twin-arc TIG welding method (Sedar-TIG) for pclng storage tank. Weld World 48:35–39

    Article  Google Scholar 

  37. Somashekara MA, Suryakumar S (2017) Studies on dissimilar twin-wire weld-deposition for additive manufacturing applications. T Indian I Metals 70(8):2123–2135

    Article  Google Scholar 

  38. Lassaline E, North T (1989) Narrow groove twin-wire GMAW of high-strength steel. Weld J 69:53–58

    Google Scholar 

  39. Zhang MJ, Chen GY, Zhou Y et al (2014) Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser. Mater Des 53:568–576

    Article  Google Scholar 

  40. Zhao Y, Ma SC, Huang J et al (2017) Narrow-gap laser welding using filler wire of thick steel plates. Int J Adv Manuf Tech 93(1):1–8

    Google Scholar 

  41. Phaoniam R, Yamamoto M, Yamamoto M et al (2014) Solidification cracking susceptibility of modified 9Cr1Mo steel weld metal during hot-wire laser welding with a narrow gap groove. Weld World 58:469–476

    Article  Google Scholar 

  42. Karhu M, Kujanpää, V (2008) Experimental test set-up for studying hot cracking in multi pass laser hybrid welding of thick section austenitic stainless steel. In: Proceedings of ICALEO 27th international congress on applications of lasers & electro-optics, pp 535–544

    Google Scholar 

  43. Elmesalamy AS, Francis JA, Li L (2014) A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel. Int J Press Vessel Pip 113:49–59

    Article  Google Scholar 

  44. Elmesalamy AS, Li L, Francis JA et al (2013) Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels. Int J Adv Manuf Tech 68:11–17

    Article  Google Scholar 

  45. Shi H, Zhang K, Xu ZY et al (2014) Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire. Int J Adv Manuf Tech 75:279–291

    Article  Google Scholar 

  46. Phaoniam R, Shinozaki K, Yamamoto M et al (2013) Development of a highly efficient hot-wire laser hybrid process for narrow-gap welding-welding phenomena and their adequate conditions. Weld World 57:607–613

    Article  Google Scholar 

  47. Wen P, Shan JG, Zheng SQ et al (2015) Control of wire transfer behaviors in hot wire laser welding. Int J Adv Manuf Tech 83:2091–2100

    Google Scholar 

  48. Kaplan A, Kim K, Bang HS et al (2016) Narrow gap laser welding by multilayer hot wire addition. J Laser Appl 28:1–8

    Article  Google Scholar 

  49. Liu W (2014) Experimental and numerical studies on hybrid laser welding techniques of thick plates. Dissertations, Southern Methodist University

    Google Scholar 

  50. Yamazaki Y, Abe Y, Hioki Y et al (2016) Fundamental study of narrow-gap welding with oscillation laser beam. Weld Int 30:699–707

    Article  Google Scholar 

  51. Zhang XD, Chen WZ, Bao G et al (2004) Improvement of weld quality using a weaving beam in laser welding. J Mater Sci Technol 20:633–636

    Google Scholar 

  52. Thiel C, Hess A, Weber R et al (2012) Stabilization of laser welding processes by means of beam oscillation. Laser Sour Appl 8433:1–10

    Google Scholar 

  53. Wang L, Gao M, Zhang C et al (2016) Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater Des 108:707–717

    Article  Google Scholar 

  54. Li K, Wang W, Shan N et al (2016) Analysis of keyhole-type pore suppressing in fiber laser welded TC4 titanium alloy with beam weaving. Trans China Weld Inst 37:43–46

    Google Scholar 

  55. Dahmen M, Coste F, Kapper G et al (2000) Application of a modern high-power laser to heavy section welding. In: Proceedings of SPIE—The International Society for Optical Engineering, vol 3888, pp 404–410

    Google Scholar 

  56. Shen JQ, Li B, Hu SS et al (2017) Comparison of single-beam and dual-beam laser welding of Ti-22A1-25Nb/TA15 dissimilar titanium alloys. Opt Laser Technol 93:118–126

    Article  Google Scholar 

  57. Liu Y, Kannatey AE (1997) Experimental study of dual-beam laser welding of AISI 4140 steel. Weld J 76:342–348

    Google Scholar 

  58. Liu Y, Kannateyasibu E (1993) Laser-beam welding with simultaneous gaussian laser preheating. J Heat Trans 115:34–41

    Article  Google Scholar 

  59. Ma GL, Li LQ, Chen YB (2017) Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire. Opt Laser Technol 91:138–148

    Article  Google Scholar 

  60. Wang XY, Gong SL, Yang J et al (2016) Study on the process parameters optimizing and microstructure characteristics in narrow-gap laser welding of thick TC4 plate. Aeronaut Manuf Technol 23:104–107

    Google Scholar 

  61. Li C, Muneharua K, Takao S et al (2009) Fiber laser-GMA hybrid welding of commercially pure titanium. Mater Des 30:109–114

    Article  Google Scholar 

  62. Li C, Liu L (2012) Laser-arc hybrid welding of T-type structure of titanium sheet. Trans China Weld Inst 33:29–160

    Google Scholar 

  63. Nielsen S (2015) High power laser hybrid welding—challenges and perspectives. In: 15th Nordic laser materials processing conference, Finland, vol 78, pp 24–34

    Article  Google Scholar 

  64. Su X (2014) Characteristics of medium thickness of titanium plate laser-MIG hybrid welding. Dissertation, Harbin Institute of Technology

    Google Scholar 

  65. Cao YM (2011) Study on laser-TIG arc hybrid welding process of medium titanium alloy plate. Dissertation, Dalian University of Technology

    Google Scholar 

  66. Acherjee B (2018) Hybrid laser arc welding: state-of-art review. Opt Laser Technol 99:60–71

    Article  Google Scholar 

  67. Yamamoto N, Liao JS, Murakami T et al (2013) Fundamental study on fiber laser-MIG arc hybrid weldability of Ti-6Al-4V titanium alloy. J Jap I Met 77(3):94–100

    Google Scholar 

  68. Li G, Lu XF, Zhu XL et al (2017) The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire for nuclear power plants. Opt Laser Technol 94:97–105

    Article  Google Scholar 

  69. Shi H, Zhang K, Zheng J et al (2017) Defects inhibition and process optimization for thick plates laser welding with filler wire. J Manuf Process 26:425–432

    Article  Google Scholar 

  70. Huang JL, Warnken N, Gebelin JC et al (2012) On the mechanism of porosity formation during welding of titanium alloys. Acta Mater 60:3215–3225

    Article  Google Scholar 

  71. Tsukamoto S (2011) High speed imaging technique. Part 2—High speed imaging of power beam welding phenomena. Sci Technol Weld Joi 16:44–55

    Article  Google Scholar 

  72. Kaplan AF, Mizutani M, Katayama S et al (2002) Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc. J Phys D Appl Phys 35(11):1218–1228

    Article  Google Scholar 

  73. Tsay LW, Shan YP, Chao YH et al (2006) The influence of porosity on the fatigue crack growth behavior of Ti-6Al-4V laser welds. J Mater Sci 41:7498–7505

    Article  Google Scholar 

  74. Fomin F, Kashaev N (2017) Influence of porosity on the high cycle fatigue behaviour of laser Beam welded Ti-6Al-4V butt joints. Proc Struct Integr 7:415–422

    Article  Google Scholar 

  75. Sun JH, Nie PL, Feng K et al (2017) The elimination of pores in laser welds of AISI 304 plate using different shielding gases. J Mater Process Tech 248:56–63

    Article  Google Scholar 

  76. Li LQ, Peng GC, Wang JD et al (2018) Experimental study on weld formation of Inconel 718 with fiber laser welding under reduced ambient pressure. Vacuum 151:140–147

    Article  Google Scholar 

  77. Blackburn JE, Allen CM, Hilton PA et al (2010) Modulated YAG laser welding of Ti-6Al-4V. Sci Technol Weld Join 15:433–439

    Article  Google Scholar 

  78. Yexin C (2015) Kinetics of hydrogen diffusion in Ti-6Al-4V alloy. Rare Metal Mat Eng 44:553–556

    Article  Google Scholar 

  79. Short A (2009) Gas tungsten arc welding of α + β titanium alloys: a review. Metal Sci J 25:309–324

    Google Scholar 

  80. Withers P, Bhadeshia H (2001) Residual stress. Part 1: Measurement techniques. Metal Sci J 17:355–365

    Google Scholar 

  81. Li L (2011) Numerical simulation of temperature and stress fields in wire filling laser multilayer welding. Chin J Lasers 38:1–5

    Article  Google Scholar 

  82. Squillace A, Prisco U, Ciliberto S et al (2012) Effect of welding parameters on morphology and mechanical properties of Ti-6Al-4V laser beam welded butt joints. J Mater Process Tech 212:427–436

    Article  Google Scholar 

  83. Sun Z, Pan D, Zhang W (2003) Correlation between welding parameters and microstructures in TIG, plasma and laser welded Ti-6Al-4V alloy. In: Trends in welding research, proceedings, 760–767

    Google Scholar 

  84. Hamadou M, Fabbro R, Coste F et al (2005) Experimental study of CO2 laser welding inside a groove—application to high thickness laser welding. J Laser Appl 17:178–182

    Article  Google Scholar 

  85. Fu GM, Lourenco MI, Duan ML et al (2016) Influence of the welding sequence on residual stress and distortion of fillet welded structures. Mar Struct 46:30–55

    Article  Google Scholar 

  86. Kumar S, Wu CS, Padhy GK et al (2017) Application of ultrasonic vibrations in welding and metal processing: a status review. J Manuf Process 26:295–322

    Article  Google Scholar 

  87. Kabir AS, Cao XJ, Gholipour J et al (2012) Effect of postweld heat treatment on microstructure, hardness, and tensile properties of laser-welded Ti-6Al-4V. Metall Mater Trans A 43:4171–4184

    Article  Google Scholar 

  88. Hsieh CT, Chu CY, Shiue RK et al (2014) The effect of post-weld heat treatment on the notched tensile fracture of Ti-6Al-4 V to Ti-6Al-6V-2Sn dissimilar laser welds. Mater Des 59:227–232

    Article  Google Scholar 

  89. Xu PQ, Li LJ, Zhang CB (2014) Microstructure characterization of laser welded Ti-6Al-4V fusion zones. Mater Charact 87:179–185

    Article  Google Scholar 

  90. Ahmed T, Rack H (1998) Phase transformations during cooling in α + β titanium alloys. Mat Sci Eng A 243:206–211

    Article  Google Scholar 

  91. Qi YL, Deng J, Hong Q et al (2000) Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet. Mat Sci Eng A 280:177–181

    Article  Google Scholar 

  92. Qazi JI, Rahim J, Fores FH et al (2001) Phase transformations in Ti-6Al-4V-xH alloys. Metall Mater Trans A 32:2453–2463

    Article  Google Scholar 

  93. Murthy K, Sundaresan S (1997) Fracture toughness of Ti6Al4V after welding and postweld heat treatment. Weld J 76

    Google Scholar 

  94. Borlaug M, Eriksen L, Yu YD et al (2014) Characterization of microstructure and strain response in Ti-6Al-4V plasma welding deposited material by combined EBSD and in-situ tensile test. Trans Nonferr Metal Soc 24:3929–3943

    Article  Google Scholar 

  95. Wei W, Gao HM, Wu L (2007) Phase transformation and grain growth in the heat affected zone during welding of ultra fine grain Ti-6Al-4V. J Comput Theor Nanosci 5:1560–1564

    Article  Google Scholar 

  96. Mishra S, Debroy T (2004) Measurements and monte carlo simulation of grain growth in the heat-affected zone of Ti-6Al-4V welds. Acta Mater 52:1183–1192

    Article  Google Scholar 

  97. Smith LS, Gittos M, Threadgill P (1999) High quality and productivity joining processes and procedures for titanium risers and flowlines. In: Titanium risers and flowlines seminar, Sintef, Norway

    Google Scholar 

  98. Arif N, Chung H (2015) Alternating current-gas metal arc welding for application to thick plates. J Mater Process Technol 222:75–83

    Article  Google Scholar 

  99. Arif N, Chung H (2014) Alternating current-gas metal arc welding for application to thin sheets. J Mater Process Technol 214:1828–1837

    Article  Google Scholar 

  100. Sivaprasad K, Raman SG, Mastanaiah P et al (2006) Influence of magnetic arc oscillation and current pulsing on microstructure and high temperature tensile strength of alloy 718 TIG weldments. Mat Sci Eng A 428:327–331

    Article  Google Scholar 

  101. Sivaprasad K, Raman SG (2007) Influence of magnetic arc oscillation and current pulsing on fatigue behavior of alloy 718 TIG weldments. Mat Sci Eng A 448:120–127

    Article  Google Scholar 

  102. Yuan T, Kou SD, Luo Z (2016) Grain refining by ultrasonic stirring of the weld pool. Acta Mater 106:144–154

    Article  Google Scholar 

  103. Lei ZL, Bi J, Li P et al (2018) Analysis on welding characteristics of ultrasonic assisted laser welding of AZ31B magnesium alloy. Opt Laser Technol 105:15–22

    Article  Google Scholar 

  104. Spittle J (2006) Columnar to equiaxed grain transition in as solidified alloys. Int Mater Rev 51:247–269

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Key Research and Development Program of China (2016YFB0300602) and the National Natural Science Foundation of China (51475104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Q., Li, J., Liu, Y., Feng, J. (2019). Narrow Gap Welding for Thick Titanium Plates: A Review. In: Chen, S., Zhang, Y., Feng, Z. (eds) Transactions on Intelligent Welding Manufacturing. Transactions on Intelligent Welding Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-8668-8_2

Download citation

Publish with us

Policies and ethics