Skip to main content

On-Line Monitoring and Defects Detection of Robotic Arc Welding: A Review and Future Challenges

  • Conference paper
  • First Online:
Transactions on Intelligent Welding Manufacturing

Abstract

Robotic arc Welding is the main manufacturing technology for key structure components in the industries of aerospace, automobile, nuclear, ship and military equipment. Real-time monitoring, controlling and detecting of the welding process and seam quality can improve the stability and reliability of weld quality while increasing the efficiency and accuracy of defect detection. In this paper, we briefly reviewed the state-of-art on-line welding process monitoring based on different sensing techniques, including image vision, laser vision and distance, arc optical emission, arc audible sound and new immerging X-ray computed tomography. Then, a concise review of feature dimension reduction and selection is provided before the multisensory information fusion. The anticipated challenges are carefully discussed from the aspect of data correlation, evaluation and deep learning. We believe that more attention should be paid on topics such as real-time inner defects detection combining with defects micro characterization; problems related to complex-thin-big structure component welding; and applications of the latest deep learning technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarn TJ, Chen SB, Zhou CJ (2011) Robotic welding, intelligence and automation. Ind Rob 36(2):294–303

    MATH  Google Scholar 

  2. Chen SB (2011) Research evolution on intelligentized technologies for robotic welding at SJTU. In: Proceedings of robotic welding, intelligence and automation, vol 2011. Springer, Heidelberg, pp 3–14

    Google Scholar 

  3. Huang H, Yin XQ, Feng ZL et al (2019) Finite element analysis and in-situ measurement of out-of-plane distortion in thin plate TIG welding. Materials 12(1):17–24

    Google Scholar 

  4. Liu YK, Zhang YM (2014) Model-based predictive control of weld penetration in gas tungsten arc welding. IEEE Trans Control Syst Technol 22(3):955–966

    Article  MathSciNet  Google Scholar 

  5. Liu YK, Zhang YM (2013) Control of 3D weld pool surface. Control Eng Pract 21(11):1469–1480

    Article  Google Scholar 

  6. Liu YK, Zhang YM (2017) Supervised learning of human welder behaviors for intelligent robotic welding. IEEE Trans Autom Sci Eng 14(3):1532–1541

    Article  Google Scholar 

  7. Xu YL, Lv N, Fang G et al (2017) Welding seam tracking in robotic gas metal arc welding. J Mater Process Technol 248(1):18–30

    Article  Google Scholar 

  8. Xu YL, Fang G, Lv N et al (2015) Computer vision technology for seam tracking in robotic GTAW and GMAW. Rob Comput Integr Manuf 32(1):25–36

    Article  Google Scholar 

  9. Xu YL, Lv N, Zhong JY et al (2012) Research on the real-time tracking information of three-dimension welding seam in robotic GTAW process based on composite sensor technology. J Intell Rob Syst 68(2):89–103

    Article  Google Scholar 

  10. Chen Z, Chen J, Feng Z (2017) Monitoring weld pool surface and penetration using reversed electrode images. Weld J 96(10):367–375

    Google Scholar 

  11. Chen ZY, Chen J, Feng ZL (2018) Welding penetration prediction with passive vision system. J Manuf Process 36(1):224–230

    Article  Google Scholar 

  12. Fan JF, Jing FS, Yang L et al (2019) A precise initial weld point guiding method of micro-gap weld based on structured light vision sensor. IEEE Sens J 19(1):322–331

    Article  Google Scholar 

  13. Yang L, Li E, Long T et al (2019) A novel 3-D path extraction method for arc welding robot based on stereo structured light sensor. IEEE Sens J 19(2):763–773

    Article  Google Scholar 

  14. Selami Y, Tao W, Gao Q (2018) A scheme for enhancing precision in 3-dimensional positioning for non-contact measurement systems based on laser triangulation. Sensors 18(2):504

    Article  Google Scholar 

  15. Yang HW, Tao W, Yin XQ et al (2018) Differential correction system of laser beam directional dithering based on symmetrical beamsplitter. Opt Rev 25(1):10–17

    Article  Google Scholar 

  16. Chen XZ, Yu J (2018) Acquisition and optimization of weld trajectory and pose information for robot welding of spatial corrugated web sheet based on laser sensing. Int J Adv Manuf Technol 96(9–12):3033–3041

    Article  Google Scholar 

  17. Chen XZ, Huang YM, Chen SB (2012) Model analysis and experimental technique on computing accuracy of seam spatial position information based on stereo vision for welding robot. Ind Rob 39(4):349–356

    Article  Google Scholar 

  18. Chen XZ, Chen SB (2010) The autonomous detection and guiding of start welding position for arc welding robot. Ind Rob 37(1):70–78

    Article  Google Scholar 

  19. Mirapeix J, Vila E, Valdiande JJ et al (2016) Real-time detection of the aluminium contribution during laser welding of Usibor1500 tailor-welded blanks. J Mater Process Technol 235(1):106–113

    Article  Google Scholar 

  20. Zhang ZF, Chen HB, Xu YL (2015) Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding. Mech Syst Signal Process 60–61(1):151–165

    Article  Google Scholar 

  21. Harooni M, Carlson B, Kovacevic R (2014) Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis. Opt Lasers Eng 56(1):54–66

    Article  Google Scholar 

  22. Palanco S, Klassen M, Skupin J et al (2001) Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys. Spectrochim Acta Part B 56(6):651–659

    Article  Google Scholar 

  23. Park H, Rhee S, Kim D (2001) A fuzzy pattern recognition-based system for monitoring laser weld quality. Meas Sci Technol 12(8):1318–1324

    Article  Google Scholar 

  24. You YD, Gao XD, Katayama S (2015) Detection of imperfection formation in disk laser welding using multiple on-line measurements. J Mater Process Technol 219(1):209–220

    Article  Google Scholar 

  25. You DY, Gao XD, Katayama S (2014) Monitoring of high-power laser welding using high-speed photographing and image processing. Mech Syst Signal Process 49(1–2):39–52

    Article  Google Scholar 

  26. You DY, Gao XD, Katayama S (2015) A novel stability quantification for disk laser welding by using frequency correlation coefficient between multiple-optics signals. IEEE/ASME Trans Mechatron 20(1):327–337

    Article  Google Scholar 

  27. Park YW, Park H, Rhee S et al (2002) Real time estimation of CO2 laser weld quality for automotive industry. Opt Laser Technol 34(2):135–142

    Article  Google Scholar 

  28. Sun A, Kannatey-Asibu E, Gartner M (2002) Monitoring of laser weld penetration using sensor fusion. J Laser Appl 14(2):114–121

    Article  Google Scholar 

  29. Lee CJ, Kim JD, Kim YC (2015) Study on monitoring of plasma emission signal in lap welding of Zn coated steel sheet using CO2 laser. Int J Precis Eng Manuf 16(3):495–500

    Article  Google Scholar 

  30. Naso D, Turchiano B, Pantaleo P (2005) A fuzzy-logic based optical sensor for online weld defect-detection. IEEE Trans Ind Inform 1(4):259–273

    Article  Google Scholar 

  31. Zhang ZF, Yu HW, Lv N et al (2013) Real-time defect detection in pulsed GTAW of Al alloys through on-line spectroscopy. J Mater Process Technol 213(7):1146–1156

    Article  Google Scholar 

  32. Ali A, Farson D (2002) Statistical classification of spectral data for laser weld quality monitoring. J Manuf Sci Eng 124(2):323–325

    Article  Google Scholar 

  33. Farson D, Ali A, Li XC (1999) Laser weld penetration monitoring with multiple emission signal measurements. J Laser Appl 11(2):47–53

    Article  Google Scholar 

  34. Farson D, Sang Y, Ali A (1997) Relationship between airborne acoustic and optical emissions during laser welding. J Laser Appl 9(2):87–94

    Article  Google Scholar 

  35. Yu HW, Xu YL, Song JQ et al (2015) On-line monitor of hydrogen porosity based on arc spectral information in Al-Mg alloy pulsed gas tungsten arc welding. Opt Laser Technol 70(1):30–38

    Article  Google Scholar 

  36. Yu HW, Xu YL, Lv N et al (2013) Arc spectral processing technique with its application to wire feed monitoring in Al-Mg alloy pulsed gas tungsten arc welding. J Mater Process Technol 213(5):707–716

    Article  Google Scholar 

  37. Huang YM, Hou SS, Sun T et al (2018) An improved model of porosity formation during pulsed GTA welding of aluminum alloys. Mater Sci Eng B 238(1):122–129

    Article  Google Scholar 

  38. Huang YM, Zhao DJ, Chen HB (2018) Porosity detection in pulsed GTA welding of 5A06 Al alloy through spectral analysis. J Mater Process Technol 259(1):332–340

    Article  Google Scholar 

  39. Huang YM, Wu D, Lv N et al (2017) Investigation of porosity in pulsed GTAW of aluminum alloys based on spectral and X-ray image analyses. J Mater Process Technol 243(1):365–373

    Article  Google Scholar 

  40. Huang YM, Wu D, Zhang ZF et al (2017) EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA-SVM. J Mater Process Technol 293(1):92–102

    Article  Google Scholar 

  41. Zhang ZF, Zhang LJ, Wen GR (2019) Study of inner porosity detection for Al-Mg alloy in arc welding through on-line optical spectroscopy: Correlation and feature reduction. J Manuf Process 39(1):79–92

    Article  Google Scholar 

  42. Mirapeix J, Garcia-Allende PB, Cobo A et al (2007) Real-time arc-welding defect detection and classification with principal component analysis and artificial neural networks. NDT and E Int 40(4):315–323

    Article  Google Scholar 

  43. Mirapeix J (2010) Welding diagnostics based on feature selection and optimization algorithms. In: Conference on optical sensing and detection, vol 7726. SPIE, Brussels, pp 1–8

    Google Scholar 

  44. Garcia-Allende PB, Mirapeix J, Conde OM et al (2009) Defect detection in arc-welding processes by means of the line-to-continuum method and feature selection. Sensors 9(10):7753–7770

    Article  Google Scholar 

  45. Cobo A, Mirapeix J, Linares F (2007) Spectroscopic sensor system for quality assurance of the tube-to-tube sheet welding process in nuclear steam generators. IEEE Sens J 7(9–10):1219–1224

    Article  Google Scholar 

  46. Song LJ, Huang WK, Han X et al (2017) Real-time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing. IEEE Trans Ind Electron 64(1):633–642

    Article  Google Scholar 

  47. Mazmnder J (2016) Smart additive manufacturing system. US patent 0052086 Al, 25 Feb 2016

    Google Scholar 

  48. Xiao X, Hua X, Li F et al (2016) Spectroscopic measurement of temperature and gas composition in Ar-N2 shielded TIG welding. Weld World 60(6):1287–1296

    Article  Google Scholar 

  49. Xiao X, Hua XM, Li F et al (2014) A modified Fowler-Milne method for monochromatic image analysis in multi-element arc plasma welding. J Mater Process Technol 214(11):2770–2776

    Article  Google Scholar 

  50. Nomura K, Yoshii K, Toda K (2017) 3D measurement of temperature and metal vapor concentration in MIG arc plasma using a multidirectional spectroscopic method. J Phys D Appl Phys 50(42):29–48

    Article  Google Scholar 

  51. Shigeta M, Nakanishi S, Tanaka M et al (2017) Analysis of dynamic plasma behaviours in gas metal arc welding by imaging spectroscopy. Weld Int 31(9):669–680

    Article  Google Scholar 

  52. Nomura K, Kishi T, Shirai K et al (2015) Temperature measurement of asymmetrical pulsed TIG arc plasma by multidirectional monochromatic imaging method. Weld World 59(2):283–293

    Article  Google Scholar 

  53. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43(43):185–193

    Google Scholar 

  54. Zhang ZF, Chen SB (2017) Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals. J Intell Manuf 28(1):207–218

    Article  Google Scholar 

  55. Cayo EH, Alfrao SCA (2009) A non-intrusive GMA welding process quality monitoring system using acoustic sensing. Sensors 9(9):7150–7166

    Article  Google Scholar 

  56. Wang JF (2010) Feature extraction in welding penetration monitoring with arc sound signals. In: 36th MATADOR conference on advances in machining technology, vol 225. SAGE, Manchester, pp 1683–1691

    Article  Google Scholar 

  57. Lv N, Zhong JY, Wang JF et al (2014) Automatic measuring and processing system of audio sensing for real-time arc height control of pulsed GTAW. Sens Rev 34(1):51–66

    Article  Google Scholar 

  58. Cao JW, Wang W, Wang JZ et al (2017) Excavation equipment recognition based on novel acoustic statistical features. IEEE Trans Cybern 47(12):4392–4404

    Article  Google Scholar 

  59. Giannakopoulos T (2010) Audio-visual fusion for detecting violent scenes in videos. In: Hellenic conference on artificial intelligence, vol 6040. Springer, Heidelberger, pp 91–100

    Chapter  Google Scholar 

  60. Lv N (2010) Investigation on acoustic signals for on-line monitoring of welding. In: 2010 international conference on robotic welding, intelligence and automation, vol 2. Springer, Heidelberger, pp 235–243

    Google Scholar 

  61. Lv N (2013) Penetration feature extraction and modeling of arc sound signal in GTAW based on wavelet analysis and hidden Markov model. In: 22nd IEEE international symposium on industrial electronics, vol 236. IEEE, New York, pp 236–241

    Google Scholar 

  62. Lv N, Xu YL, Li SC et al (2017) Automated control of welding penetration based on audio sensing technology. J Mater Process Technol 250(1):81–98

    Article  Google Scholar 

  63. Thompson DO (1990) Review of progress in quantitative nondestructive evaluation. American Institute of Ph, Springer, Berlin

    Book  Google Scholar 

  64. Rokhlin SI (1996) In-process radiographic evaluation of arc welding: materials evaluation. NDT and E Int 29(1):189–206

    Google Scholar 

  65. Rokhlin SI, Guu AC (1989) Control of submerged arc weld penetration by radiographic means. NDT Int 22(2):74–80

    Google Scholar 

  66. Rokhlin SI, Cho K, Guu ACC (1989) Closed-loop process control of weld penetration using real-time radiography. Mater Eval 47(3):363–369

    Google Scholar 

  67. Pan QL, Mizutani M, Kawahito Y (2016) High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates. J Laser Appl 28(1):486–502

    Article  Google Scholar 

  68. Kawahito Y, Doi Y, Mizutani M et al (2017) Elucidation of effect of welding speed on melt flows in high-brightness and high-power laser welding of stainless steel on basis of three-dimensional X-ray transmission in-situ observation. Q J Jpn Weld Soc 31(3):206–213

    Article  Google Scholar 

  69. Katayama S, Kawahito Y (2008) Laser direct joining of metal and plastic. Scr Mater 59(12):1247–1250

    Article  Google Scholar 

  70. You DY, Gao XD, Katayama S (2014) Review of laser welding monitoring. Sci Technol Weld Joining 19(3):181–201

    Article  Google Scholar 

  71. Thompson A, Maskery I, Leach RK (2016) X-ray computed tomography for additive manufacturing: a review. Meas Sci Technol 27(7):1–25

    Article  Google Scholar 

  72. du Plessis A, Yadroitsev I, Yadroitsava I et al (2018) X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications. 3D Print Addit Manuf 5(3):227–247

    Google Scholar 

  73. Carlton HD, Haboub A, Gallegos GF et al (2016) Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater Sci Eng A 651(1):406–414

    Article  Google Scholar 

  74. Wu D (2016) Weld penetration identification for VPPAW based on keyhole features and extreme learning machine. In: 2016 IEEE workshop on advanced robotics and its social impacts (ARSO), vol 42. IEEE, New York, pp 45–50

    Google Scholar 

  75. Wu D, Huang YM, Chen HB et al (2017) VPPAW penetration monitoring based on fusion of visual and acoustic signals using t-SNE and DBN model. Mater Des 123(1):1–14

    Article  Google Scholar 

  76. Zhang ZF, Wen GR, Chen SB (2017) Audible sound-based intelligent evaluation for aluminum alloy in robotic pulsed GTAW: mechanism, feature selection and defect detection. IEEE Trans Ind Inf 14(7):2973–2983

    Article  Google Scholar 

  77. Hall DL (2004) Mathematical techniques in multisensor data fusion. Artech House Information Warfare Library, Massachusetts, pp 123–197

    MATH  Google Scholar 

  78. Jamrozik W (2013) Application of data fusion for welding process diagnostics. Przemysłowy Instytut Automatyki I Pomiarów Piap 23(12):90–95

    Google Scholar 

  79. Chen B, Chen SB, Feng JC (2014) A study of multisensor information fusion in welding process by using fuzzy integral method. Int J Adv Manuf Technol 74(1–4):413–422

    Article  Google Scholar 

  80. Chen B, Feng JC (2014) Multisensor information fusion of pulsed GTAW based on improved D-S evidence theory. Int J Adv Manuf Technol 71(1–4):91–99

    Article  Google Scholar 

  81. Huang MG, Fan SC, Zhen DZ et al (2010) Research progress of multi-sensor data fusion technologies. Transducer Microsyst Technol 29(1):5–8

    Google Scholar 

  82. Jiang YG (2010) Research on key technology of multi-sensor data fusion. Dissertation, Harbin Engineering University

    Google Scholar 

  83. You DY, Gao XD, Katayama S (2014) Multisensor fusion system for monitoring high-power disk laser welding using support vector machine. IEEE Trans Ind Inf 10(2):1285–1295

    Article  Google Scholar 

  84. Slotwinski JA, Garboczi EJ (2014) Porosity of additive manufacturing parts for process monitoring. AIP Conf Proc 1581(1):1197–1211

    Article  Google Scholar 

  85. Slotwinski JA et al (2012) Detection of cutting phenomena using sensor fusion. In: Detection of cutting phenomena using sensor fusion, vol 28. ASME, Indiana, pp 753–762

    Google Scholar 

  86. Slotwinski JA (2014) Additive manufacturing: overview and NDE challenges. AIP Conf Proc 1581(1):1173–1177

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51605372, 51775409, 61873164), the China Postdoctoral Science Foundation Funding (2018T111052, 2016M602805), the Program for New Century Excellent Talents in University (NCET-13-0461).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangrui Wen or Shanben Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Wen, G., Chen, S. (2019). On-Line Monitoring and Defects Detection of Robotic Arc Welding: A Review and Future Challenges. In: Chen, S., Zhang, Y., Feng, Z. (eds) Transactions on Intelligent Welding Manufacturing. Transactions on Intelligent Welding Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-8668-8_1

Download citation

Publish with us

Policies and ethics