Skip to main content

Spatial Interpolation

  • Chapter
  • First Online:
Book cover Semantic Kriging for Spatio-temporal Prediction

Part of the book series: Studies in Computational Intelligence ((SCI,volume 839))

Abstract

This chapter presents a background study on spatial interpolation methods, its extended variants for spatio-temporal interpolation and some probabilistic approaches for different spatial analyses. It also focuses on the issues of modeling terrestrial dynamics for meteorological applications. Modeling LULC knowledge of the terrain, evaluating semantic associations between them and enabling interoperability among the spatial data sources, have been studied extensively for spatial applications. For spatial interpolation methods and its variants, one frequency of comparison graph or a popularity graph is proposed, depicting their frequency of being chosen for comparative analysis in 85 selected articles. This facilitates us to identify the most popular, moderately popular, least popular groups of spatial interpolation methods. The most popular group members can further be chosen for the empirical comparison with the proposed approach. A brief description of each of those methods (of the most popular group) is also presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal A (2011) A new approach to spatio-temporal kriging and its applications. Master’s thesis, Ohio State University

    Google Scholar 

  2. Ahlqvist O (2005) Using uncertain conceptual spaces to translate between land cover categories. Int J Geogr Inf Sci 19(7):831–857

    Article  Google Scholar 

  3. Akkala A, Devabhaktuni V, Kumar A (2010) Interpolation techniques and associated software for environmental data. Environ Prog Sustain Energy 29(2):134–141

    Article  Google Scholar 

  4. Armstrong M (1984) Problems with universal kriging. Math Geol 16(1):101–108

    MathSciNet  Google Scholar 

  5. Arslan H (2012) Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: the case of Bafra plain, Turkey. Agric Water Manag 113:57–63

    Article  Google Scholar 

  6. Bhattacharjee S, Ghosh SK (2017) Semantic kriging. In: Encyclopedia of GIS, vol 2. Springer International Publishing, Cham, pp 1868–1879

    Chapter  Google Scholar 

  7. Bhattacharjee S, Mitra P, Ghosh SK (2014) Spatial interpolation to predict missing attributes in GIS using semantic kriging. IEEE Trans Geosci Remote Sens 52(8):4771–4780

    Article  Google Scholar 

  8. Bhattacharjee S, Das M, Ghosh SK, Shekhar S (2016) Prediction of meteorological parameters: an a-posteriori probabilistic semantic kriging approach. In: Proceedings of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, p 38

    Google Scholar 

  9. Bhowmik AK, Cabral P (2011) Statistical evaluation of spatial interpolation methods for small-sampled region: a case study of temperature change phenomenon in Bangladesh. In: Computational science and its applications-ICCSA 2011. Springer, Heidelberg, pp 44–59

    Chapter  Google Scholar 

  10. Boer EP, de Beurs KM, Hartkamp AD (2001) Kriging and thin plate splines for mapping climate variables. Int J Appl Earth Observ Geoinf 3(2):146–154

    Article  Google Scholar 

  11. Bookstein FL et al (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585

    Article  MATH  Google Scholar 

  12. Brown PJ, Le ND, Zidek JV (1994) Multivariate spatial interpolation and exposure to air pollutants. Can J Stat 22(4):489–509

    Article  MathSciNet  MATH  Google Scholar 

  13. Brus DJ, Heuvelink GB (2007) Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138(1):86–95

    Article  Google Scholar 

  14. Brus DJ, de Gruijter JJ, Marsman BA, Visschers BA, Bregt AK, Breeuwsma A (1996) The performance of spatial interpolation methods and choropleth maps to estimate properties at points: a soil survey case study. Environmetrics 7:1–16

    Article  Google Scholar 

  15. Burrough PA, McDonnell RA, Lloyd CD (2015) Principles of geographical information systems. Oxford University Press, New York

    Google Scholar 

  16. Carrera-Hernández J, Gaskin S (2007) Spatio temporal analysis of daily precipitation and temperature in the basin of Mexico. J Hydrol 336(3):231–249

    Article  Google Scholar 

  17. Chaplot V, Darboux F, Bourennane H, Leguédois S, Silvera N, Phachomphon K (2006) Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology 77(1):126–141

    Article  Google Scholar 

  18. Chen FW, Liu CW (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ 10(3):209–222

    Article  Google Scholar 

  19. Chen G, Zhao K, McDermid GJ, Hay GJ (2012) The influence of sampling density on geographically weighted regression: a case study using forest canopy height and optical data. Int J Remote Sens 33(9):2909–2924

    Article  Google Scholar 

  20. Cofıno AS, Cano R, Sordo C, Gutierrez JM (2002) Bayesian networks for probabilistic weather prediction. In: 15th European conference on artificial intelligence, ECAI, Citeseer

    Google Scholar 

  21. Comber A, Fisher P, Wadsworth R (2004) Integrating land-cover data with different ontologies: identifying change from inconsistency. Int J Geogr Inf Sci 18(7):691–708

    Article  Google Scholar 

  22. Comber A, Fisher P, Wadsworth R (2005) You know what land cover is but does anyone else? An investigation into semantic and ontological confusion. Int J Remote Sens 26(1):223–228

    Article  Google Scholar 

  23. Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley

    Google Scholar 

  24. Dlamini WM (2010) A Bayesian belief network analysis of factors influencing wildfire occurrence in Swaziland. Environ Model Softw 25(2):199–208

    Article  Google Scholar 

  25. Dozier J, Painter TH, Rittger K, Frew JE (2008) Time-space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv Water Resour 31(11):1515–1526

    Article  Google Scholar 

  26. Eberly D (2002) Thin plate splines. Geometric Tools Inc

    Google Scholar 

  27. EPA USA (2008) Cool roofs, reducing urban heat islands: compendium of strategies. Technical report, United States Environmental Protection Agency [EPA 2009a]. http://www.epa.gov/hiri/resources/compendium.htm. Accessed 18 Aug 2015

  28. Feng CC, Flewelling DM (2004) Assessment of semantic similarity between land use/land cover classification systems. Comput Environ Urban Syst 28(3):229–246

    Article  Google Scholar 

  29. Ferreira L, Borenstein D (2012) A fuzzy-Bayesian model for supplier selection. Expert Syst Appl 39(9):7834–7844

    Article  Google Scholar 

  30. Foster MP, Evans AN (2008) An evaluation of interpolation techniques for reconstructing ionospheric TEC maps. IEEE Trans Geosci Remote Sens 46(7):2153–2164

    Article  Google Scholar 

  31. Franzen DW, Peck TR (1995) Field soil sampling density for variable rate fertilization. J Product Agric 8(4):568–574

    Article  Google Scholar 

  32. Fuentes M, Raftery AE (2005) Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61(1):36–45

    Article  MathSciNet  MATH  Google Scholar 

  33. Gelfand AE, Diggle P, Guttorp P, Fuentes M (2010) Handbook of spatial statistics. CRC Press

    Google Scholar 

  34. Gundogdu KS, Guney I (2007) Spatial analyses of groundwater levels using universal kriging. J Earth Syst Sci 116(1):49–55

    Article  Google Scholar 

  35. Hancock P, Hutchinson M (2006) Spatial interpolation of large climate data sets using bivariate thin plate smoothing splines. Environ Model Softw 21(12):1684–1694

    Article  Google Scholar 

  36. Harder RL, Desmarais RN (1972) Interpolation using surface splines. J Aircr 9(2):189–191

    Article  Google Scholar 

  37. Hartkamp AD, De Beurs K, Stein A, White JW (1999) Interpolation techniques for climate variables. CIMMYT NRG-GIS Series

    Google Scholar 

  38. Hengl T, Heuvelink GB, Tadić MP, Pebesma EJ (2012) Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images. Theor Appl Climatol 107(1–2):265–277

    Article  Google Scholar 

  39. Herold M, Woodcock C, Di Gregorio A, Mayaux P, Belward AS, Latham J, Schmullius CC (2006) A joint initiative for harmonization and validation of land cover datasets. IEEE Trans Geosci Remote Sens 44(7):1719

    Article  Google Scholar 

  40. Heuvelink G, Griffith DA (2010) Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany. Geogr Anal 42(2):161–179

    Article  Google Scholar 

  41. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  42. Hussain I, Spöck G, Pilz J, Yu HL (2010) Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan. Adv Water Resour 33(8):880–886

    Article  Google Scholar 

  43. Hutchinson MF (1995) Interpolating mean rainfall using thin plate smoothing splines. Int J Geogr Inf Syst 9(4):385–403

    Article  Google Scholar 

  44. Janssen S, Dumont G, Fierens F, Mensink C (2008) Spatial interpolation of air pollution measurements using CORINE land cover data. Atmos Environ 42(20):4884–4903

    Article  Google Scholar 

  45. Karydas CG, Gitas IZ, Koutsogiannaki E, Lydakis-Simantiris N, Silleos G et al (2009) Evaluation of spatial interpolation techniques for mapping agricultural topsoil properties in Crete. EARSeL eProceedings 8(1):26–39

    Google Scholar 

  46. Keblouti M, Ouerdachi L, Boutaghane H (2012) Spatial interpolation of annual precipitation in Annaba-Algeria-comparison and evaluation of methods. Energy Procedia 18:468–475

    Article  Google Scholar 

  47. Kibria BG, Sun L, Zidek JV, Le ND (2002) Bayesian spatial prediction of random space-time fields with application to mapping PM2.5 exposure. J Am Stat Assoc 97(457), 112–124

    Article  MathSciNet  MATH  Google Scholar 

  48. Kilibarda M, Hengl T, Heuvelink G, Gräler B, Pebesma E, Perčec Tadić M, Bajat B (2014) Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J Geophys Res Atmos 119(5):2294–2313

    Article  Google Scholar 

  49. Kovacs K, Dolbear C, Goodwin J (2007) Spatial concepts and OWL issues in a topographic ontology framework. In: Proceeding of the GIS

    Google Scholar 

  50. Kravchenko A (2003) Influence of spatial structure on accuracy of interpolation methods. Soil Sci Soc Am J 67(5):1564–1571

    Article  Google Scholar 

  51. Kravchenko A, Bullock DG (1999) A comparative study of interpolation methods for mapping soil properties. Agron J 91(3):393–400

    Article  Google Scholar 

  52. Krivoruchkoa K, Gotwayb C (2003) Using spatial statistics in GIS. In: Proceedings of International Congress on Mod Sim, pp 713–736

    Google Scholar 

  53. Lambin EF, Geist HJ (2008) Land-use and land-cover change: local processes and global impacts. Springer Science & Business Media, Heidelberg

    Google Scholar 

  54. Lapen DR, Hayhoe HN (2003) Spatial analysis of seasonal and annual temperature and precipitation normals in Southern Ontario. Can J Great Lakes Res 29(4):529–544

    Article  Google Scholar 

  55. Laslett GM, McBratney AB, Pahl PJ, Hutchinson MF (1987) Comparison of several spatial prediction methods for soil pH. J Soil Sci 38:325–341

    Article  Google Scholar 

  56. Le ND, Zidek JV (1992) Interpolation with uncertain spatial covariances: a Bayesian alternative to kriging. J Multivar Anal 43(2):351–374

    Article  MathSciNet  MATH  Google Scholar 

  57. Le ND, Sun W, Zidek JV (1997) Bayesian multivariate spatial interpolation with data missing by design. J R Stat Soc Ser B (Stat Methodol) 59(2):501–510

    Article  MathSciNet  MATH  Google Scholar 

  58. LeMay V, Temesgen H (2005) Comparison of nearest neighbor methods for estimating basal area and stems per hectare using aerial auxiliary variables. Forest Sci 51(2):109–119

    Google Scholar 

  59. Li J (2008) A review of spatial interpolation methods for environmental scientists. Record (Geoscience Australia)

    Google Scholar 

  60. Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inf 6(3):228–241

    Article  Google Scholar 

  61. Li PC, Chen GH, Dai LC, Zhang L (2012) A fuzzy Bayesian network approach to improve the quantification of organizational influences in HRA frameworks. Saf Sci 50(7):1569–1583

    Article  Google Scholar 

  62. Liang D, Kumar N (2013) Time-space kriging to address the spatiotemporal misalignment in the large datasets. Atmos Environ 72:60–69

    Article  Google Scholar 

  63. Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci 34(9):1044–1055

    Article  Google Scholar 

  64. Luo W, Taylor M, Parker S (2008) A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int J Climatol 28(7):947–959

    Article  Google Scholar 

  65. Mahmood R, Quintanar AI, Conner G, Leeper R, Dobler S, Pielke RA Sr, Beltran-Przekurat A, Hubbard KG, Niyogi D, Bonan G et al (2010) Impacts of land use/land cover change on climate and future research priorities. Bull Am Meteorol Soc 91(1):37–46

    Article  Google Scholar 

  66. Messer H, Zinevich A, Alpert P (2006) Environmental monitoring by wireless communication networks. Science 312(5774):713–713

    Article  Google Scholar 

  67. Mueller T, Pierce F, Schabenberger O, Warncke D (2001) Map quality for site-specific fertility management. Soil Sci Soc Am J 65(5):1547–1558

    Article  Google Scholar 

  68. Mueller T, Pusuluri N, Mathias K, Cornelius P, Barnhisel R, Shearer S (2004) Map quality for ordinary kriging and inverse distance weighted interpolation. Soil Sci Soc Am J 68(6):2042–2047

    Article  Google Scholar 

  69. Nalder IA, Wein RW (1998) Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric Forest Meteorol 92(4):211–225

    Article  Google Scholar 

  70. Nandar A (2009) Bayesian network probability model for weather prediction. In: International conference on the current trends in information technology (CTIT). IEEE, pp 1–5

    Google Scholar 

  71. Nikolopoulos E, Borga M, Creutin J, Marra F (2015) Estimation of debris flow triggering rainfall: influence of rain gauge density and interpolation methods. Geomorphology 243:40–50

    Article  Google Scholar 

  72. Odeh IO, McBratney A, Chittleborough D (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 67(3):215–226

    Article  Google Scholar 

  73. Ozelkan E, Bagis S, Ozelkan EC, Ustundag BB, Yucel M, Ormeci C (2015) Spatial interpolation of climatic variables using land surface temperature and modified inverse distance weighting. Int J Remote Sens 36(4):1000–1025

    Google Scholar 

  74. Peralvo M, Maidment D (2003) Influence of DEM interpolation methods in drainage analysis. GIS Hydro 4

    Google Scholar 

  75. Petrişor AI, Ianoş I, Tălângă C (2010) Land cover and use changes focused on the urbanization processes in Romania. Environ Eng Manag J 9(6):765–771

    Article  Google Scholar 

  76. Phachomphon K, Dlamini P, Chaplot V (2010) Estimating carbon stocks at a regional level using soil information and easily accessible auxiliary variables. Geoderma 155(3):372–380

    Article  Google Scholar 

  77. Rayitsfeld A, Samuels R, Zinevich A, Hadar U, Alpert P (2012) Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system. Atmos Res 104:119–127

    Article  Google Scholar 

  78. Reinstorf F, Binder M, Schirmer M, Grimm-Strele J, Walther W (2005) Comparative assessment of regionalisation methods of monitored atmospheric deposition loads. Atmos Environ 39(20):3661–3674

    Article  Google Scholar 

  79. Ribeiro Sales MH, Souza CM, Kyriakidis PC (2013) Fusion of MODIS images using kriging with external drift. IEEE Trans Geosci Remote Sens 51(4):2250–2259

    Article  Google Scholar 

  80. Ruddick R (2007) Data interpolation methods in the geoscience Australia seascape maps. Geoscience Australia, Canberra

    Google Scholar 

  81. Schloeder C, Zimmerman N, Jacobs M (2001) Comparison of methods for interpolating soil properties using limited data. Soil Sci Soc Am J 65(2):470–479

    Article  Google Scholar 

  82. Sertel E, Ormeci C, Robock A (2011) Modelling land cover change impact on the summer climate of the Marmara region Turkey. Int J Global Warm 3(1):194–202

    Article  Google Scholar 

  83. Sheikhhasan H (2006) A comparison of interpolation techniques for spatial data prediction. Master’s thesis, Department Computer Science, Universiteit van Amsterdam, Amsterdam, The Netherlands

    Google Scholar 

  84. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. ACM, pp 517–524

    Google Scholar 

  85. Spadavecchia L, Williams M (2009) Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric Forest Meteorol 149(6):1105–1117

    Article  Google Scholar 

  86. Srinivasan BV, Duraiswami R, Murtugudde R (2010) Efficient kriging for real-time spatio-temporal interpolation. In: Proceedings of the 20th conference on probability and statistics in the atmospheric sciences, pp 228–235

    Google Scholar 

  87. Stahl K, Moore R, Floyer J, Asplin M, McKendry I (2006) Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric Forest Meteorol 139(3):224–236

    Article  Google Scholar 

  88. Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer Verlag, New York

    Book  MATH  Google Scholar 

  89. Tait A, Henderson R, Turner R, Zheng X (2006) Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface. Int J Climatol 26(14):2097–2115

    Article  Google Scholar 

  90. Tang H, Liu S (2007) Basic theory of fuzzy Bayesian networks and its application in machinery fault diagnosis. In: Fourth international conference on fuzzy systems and knowledge discovery, vol 4. IEEE, pp 132–137

    Google Scholar 

  91. Teegavarapu RS, Chandramouli V (2005) Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. J Hydrol 312(1):191–206

    Article  Google Scholar 

  92. Ustrnul Z, Czekierda D (2005) Application of GIS for the development of climatological air temperature maps: an example from Poland. Meteorol Appl 12(01):43–50

    Article  Google Scholar 

  93. Van Kuilenburg J, De Gruijter JJ, Marsman BA, Bouma J (1982) Accuracy of spatial interpolation between point data on soil moisture supply capacity, compared with estimates from mapping units. Geoderma 27:311–325

    Article  Google Scholar 

  94. Varanka D, Carter J, Usery EL, Shoberg T (2011) Topographic mapping data semantics through data conversion and enhancement. In: Geospatial semantics and the semantic web. Springer, Boston, pp 145–162

    Chapter  Google Scholar 

  95. Varanka DE (2011) Ontology patterns for complex topographic feature types. Cartogr Geogr Inf Sci 38(2):126–136

    Article  Google Scholar 

  96. Wackernagel H, Oliveira VD, Kedem B (1997) Multivariate geostatistics. SIAM Rev 39(2):340–340

    Google Scholar 

  97. Wahba G (1990) Spline models for observational data, vol 59. SIAM

    Google Scholar 

  98. Wahba G, Wendelberger J (1980) Some new mathematical methods for variational objective analysis using splines and cross validation. Mon Weather Rev 108(8):1122–1143

    Article  Google Scholar 

  99. Weber D, Englund E (1992) Evaluation and comparison of spatial interpolators. Math Geol 24(4):381–391

    Article  Google Scholar 

  100. Webster R, Oliver MA (2007) Geostatistics for environmental scientists. Wiley

    Google Scholar 

  101. Weisz R, Fleischer S, Smilowitz Z (1995) Map generation in high-value horticultural integrated pest management: appropriate interpolation methods for site-specific pest management of colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 88(6):1650–1657

    Article  Google Scholar 

  102. Wentz EA, Peuquet DJ, Anderson S (2010) An ensemble approach to space-time interpolation. Int J Geogr Inf Sci 24(9):1309–1325

    Article  Google Scholar 

  103. Xie Y, Chen Tb, Lei M, Yang J, Guo Qj, Song B, Zhou Xy (2011) Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere 82(3):468–476

    Article  Google Scholar 

  104. Yang D, Gu C, Dong Z, Jirutitijaroen P, Chen N, Walsh WM (2013) Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging. Renew Energy 60:235–245

    Article  Google Scholar 

  105. Yasrebi J, Saffari M, Fathi H, Karimian N, Moazallahi M, Gazni R et al (2009) Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Res J Biol Sci 4(1):93–102

    Google Scholar 

  106. Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175

    Article  MATH  Google Scholar 

  107. Zhou F, Guo HC, Ho YS, Wu CZ (2007) Scientometric analysis of geostatistics using multivariate methods. Scientometrics 73(3):265–279

    Article  Google Scholar 

  108. Zimmerman D, Pavlik C, Ruggles A, Armstrong MP (1999) An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math Geol 31(4):375–390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrutilipi Bhattacharjee .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharjee, S., Ghosh, S.K., Chen, J. (2019). Spatial Interpolation. In: Semantic Kriging for Spatio-temporal Prediction. Studies in Computational Intelligence, vol 839. Springer, Singapore. https://doi.org/10.1007/978-981-13-8664-0_2

Download citation

Publish with us

Policies and ethics