Skip to main content

Birefringent Metamaterials for THz Optics

  • Chapter
  • First Online:
Electromagnetic Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 287))

  • 1021 Accesses

Abstract

Terahertz (THz) region is typically referred to as the frequencies from 100 GHz to 30 THz, which lies between the infrared and microwaves. Since the typical wavelength of the THz wave is hundreds micrometer, we can easily fabricate the metallic structure with the size comparable with its wavelength, and the bulky three-dimensional metamaterial is not huge. Recent development of the ultrafast-pulse-laser technique allowed the generation and detection of the THz electromagnetic pulse, which has led to easy characterization of the medium with the time-domain spectroscopy. Therefore, there are many reports on the metamaterials in the THz frequency region. Metamaterials have been used as the practical optics in the THz region. Many materials are not transparent in this frequency region, so the artificial media based on the periodic structures of the metal such as the metal slit array and metal hole array have been developed. In this chapter, we review the recent advances of the metamaterials in the THz frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Pozar, Microwave Engineering (Wiley, 1998)

    Google Scholar 

  2. R. Mendis, D.M. Mittleman, Opt. Express 17, 14839–14850 (2009)

    Article  CAS  Google Scholar 

  3. R. Mendis, A. Nag, F. Chen, D.M. Mittleman, Appl. Phys. Lett. 97, 131106 (2010)

    Article  Google Scholar 

  4. R. Mendis, IEEE Trans. Microw. Theory Tech. 58, 1993–1998 (2010)

    Google Scholar 

  5. V. Pacheco-Peña, V. Torres, B. Orazbayev, M. Beruete, M. Navarro-Cía, M. Sorolla, N. Engheta, Appl. Phys. Lett. 105, 243503 (2014)

    Article  Google Scholar 

  6. R. Mendis, M. Nagai, Y. Wang, N. Karl, D.M. Mittleman, Terahertz artificial dielectric lens. Sci. Rep. 6, 23023 (2016)

    Article  CAS  Google Scholar 

  7. R. Mendis, J. Liu, D.M. Mittleman, Appl. Phys. Lett. 101, 111108 (2012)

    Article  Google Scholar 

  8. J. Liu, R. Mendis, D.M. Mittleman, Appl. Phys. Lett. 103, 031104 (2013)

    Article  Google Scholar 

  9. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545–591 (2000)

    Article  CAS  Google Scholar 

  10. A. Baltuška, Th Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, F. Krausz, Nature 421, 611–616 (2003)

    Article  Google Scholar 

  11. M. Nagai, Y. Kamon, E. Matsubara, Y. Minowa, M. Ashida, Proceedings of SPIE—The International Society for Optical Engineering, vol. 9361 (2015)

    Google Scholar 

  12. R. Mendis, D. Grischkowsky, Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt. Lett. 26, 846–848 (2001)

    Article  CAS  Google Scholar 

  13. R. Mendis, D. Grischkowsky, THz interconnect with low loss and low group velocity dispersion. IEEE Microw. Wirel Compon. Lett. 11, 444–446 (2001)

    Article  Google Scholar 

  14. J. Zhang, D. Grischkowsky, Opt. Lett. 29, 1617 (2004)

    Article  Google Scholar 

  15. R. Mendis J. Appl. Phys. 101, 083115 (2007)

    Google Scholar 

  16. T. Suzuki, M. Nagai, Y. Kishi, Opt. Lett. 41, 325–328 (2016)

    Article  Google Scholar 

  17. L. Brillouin, J. Appl. Phys. 19, 1023–1041 (1948)

    Article  Google Scholar 

  18. A. Bingham, Y. Zhao, D. Grischkowsky, Appl. Phys. Lett. 87, 051101 (2005)

    Article  Google Scholar 

  19. J. Kitagawa, M. Kodama, S. Koya, Y. Nishifuji, D. Armand, Y. Kadoya, Opt. Express 20, 17271–17280 (2012)

    Article  Google Scholar 

  20. E.S. Lee, J.-K. So, G.-S. Park, D. Kim, C.-S. Kee, T.-I. Jeon, Opt. Express 20, 6116–6123 (2012)

    Article  Google Scholar 

  21. M.A. Kats, D. Woolf, R. Blanchard, N. Yu, F. Capasso, Opt. Express 19, 14860–14870 (2011)

    Article  CAS  Google Scholar 

  22. M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, H. Ohtake, Opt. Lett. 39, 146–149 (2014)

    Article  Google Scholar 

  23. M. Nagai, N. Mukai, Y. Minowa, M. Ashida, T. Suzuki, J. Takayanagi, H. Ohtake, Opt. Express 23, 4641–4649 (2015)

    Article  CAS  Google Scholar 

  24. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.-T. Chen, Science 340, 1304 (2013)

    Article  CAS  Google Scholar 

  25. V. Torres, N. Sánchez, D. Etayo, R. Ortuño, M. Navarro-Cía, IEEE Photon. Tech. Lett. 26, 1679 (2014)

    Google Scholar 

  26. T. Morimoto, G. Yamashita, M. Nagai, M. Ashida, Appl. Phys. Express 9, 022402 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Nagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagai, M. (2019). Birefringent Metamaterials for THz Optics. In: Sakoda, K. (eds) Electromagnetic Metamaterials. Springer Series in Materials Science, vol 287. Springer, Singapore. https://doi.org/10.1007/978-981-13-8649-7_6

Download citation

Publish with us

Policies and ethics