Skip to main content

UV-Nanoimprinted Metasurface Thermal Emitters for Infrared CO2 Sensing

  • Chapter
  • First Online:
  • 1058 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 287))

Abstract

A polarization- and angle-independent dual-band metasurface thermal emitter for CO2 sensing was developed. The metasurface was based on a stacked Au/Al2O3/Au structure in which orthogonal rectangular Au patches were alternately arrayed, generating nearly perfect blackbody radiation with emittance as high as 0.98 at 4.26 and 3.95 μm. The metasurface was integrated on a Joule heater fabricated on a SiN membrane so that infrared light is radiated by applying voltage. Subwavelength-sized metasurfaces were manufactured by mass-producible, cost-effective ultraviolet nanoimprint lithography, and the emitter chip was mounted on a standard package compatible with conventional optoelectronic devices. A simple single-layer lift-off process was enabled by employing an organic-solvent-soluble UV resist. The metasurface emitter was applied to a CO2 sensor and was demonstrated to reduce required electric power by 31% as compared with a conventional blackbody emitter, due to the suppressed unnecessary radiation. Results demonstrate that commercialization of metasurface infrared thermal emitters is becoming a reality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    TO: Transistor Outline.

  2. 2.

    C-QFN: Ceramic Quad Flat No Lead Package. LCC: Ceramic Leadless Chip Carrier.

References

  1. J. Hodgkinson, R.P. Tatam, Meas. Sci. Technol. 24, 012004 (2013)

    Article  Google Scholar 

  2. P.J. Hesketh, J.N. Zemel, B. Gebhart, Nature 324, 549 (1986)

    Article  CAS  Google Scholar 

  3. S. Maruyama, T. Kashiwa, H. Yugami, M. Esashi, Appl. Phys. Lett. 79, 1393 (2001)

    Article  CAS  Google Scholar 

  4. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, Nature 416, 61 (2002)

    Article  CAS  Google Scholar 

  5. F. Kusunoki, J. Takahara, T. Kobayashi, Electron. Lett. 39, 23 (2003)

    Article  CAS  Google Scholar 

  6. S.Y. Lin, J. Moreno, J.G. Fleming, Appl. Phys. Lett. 83, 380 (2003)

    Article  CAS  Google Scholar 

  7. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, S.-C. Lee, Appl. Phys. Lett. 89, 173116 (2006)

    Article  Google Scholar 

  8. K. Ikeda, H.T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, S. Kitagawa, Appl. Phys. Lett. 92, 021117 (2008)

    Article  Google Scholar 

  9. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  CAS  Google Scholar 

  10. G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Souloulis, S. Linden, Opt. Lett. 30, 3198 (2005)

    Article  CAS  Google Scholar 

  11. V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)

    Article  Google Scholar 

  12. G. Leveque, O.J.F. Martin, Opt. Lett. 31, 2750 (2006)

    Article  CAS  Google Scholar 

  13. I. Puscasu, W.L. Schaich, Appl. Phys. Lett. 92, 233102 (2008)

    Article  Google Scholar 

  14. Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, S.-C. Lee, Appl. Phys. Lett. 93, 033113 (2008)

    Article  Google Scholar 

  15. K. Masuno, T. Sawada, S. Kumagai, M. Sasaki, IEEE Photon. Technol. Lett. 23, 1661 (2011)

    Article  Google Scholar 

  16. P.E. Chang, Y.W. Jiang, H.H. Chen, Y.T. Chang, Y.T. Wu, L.D.C. Tzuang, Y.H. Ye, S.C. Lee, Appl. Phys. Lett. 98, 073111 (2011)

    Article  Google Scholar 

  17. X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Phys. Rev. Lett. 107, 045901 (2011)

    Article  Google Scholar 

  18. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, R. Soref, Opt. Lett. 37, 371 (2012)

    Article  Google Scholar 

  19. P. Bouchon, C. Koechlin, F. Pardo, R. Haidar, J.-L. Pelouard, Opt. Lett. 37, 1038 (2012)

    Article  CAS  Google Scholar 

  20. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, Q. Xue, Opt. Express 20, 14871 (2012)

    Article  Google Scholar 

  21. Z.H. Jiang, S. Yun, F. Toor, D.H. Werner, T.S. Mayer, ACS Nano 5, 4641 (2011)

    Article  CAS  Google Scholar 

  22. K.B. Alici, A.B. Turhan, C.M. Soukoulis, E. Ozbay, Opt. Express 19, 14260 (2011)

    Article  CAS  Google Scholar 

  23. K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nature Commum. 2, 517 (2011)

    Article  Google Scholar 

  24. H.T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, K. Sakoda, Appl. Phys. Lett. 105, 121107 (2014)

    Article  Google Scholar 

  25. H.T. Miyazaki, T. Kasaya, H. Oosato, Y. Sugimoto, B. Choi, M. Iwanaga, K. Sakoda, Sci. Technol. Adv. Mater. 16, 035005 (2015)

    Article  Google Scholar 

  26. J.-J. Greffet, M. Nieto-Vesperinas, J. Opt. Soc. Am. A 15, 2735 (1998)

    Article  Google Scholar 

  27. S. Collin. F. Pardo, J.-L. Pelouard, Opt. Express 15, 4310 (2007)

    Article  Google Scholar 

  28. J. Le Perchec, Y. Desieres, R. Espiau de Lamaestre, Appl. Phys. Lett. 94, 181104 (2009)

    Article  Google Scholar 

  29. Y. Kurokawa, H.T. Miyazaki, Phys. Rev. B 75, 035411 (2007)

    Article  Google Scholar 

  30. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)

    Article  CAS  Google Scholar 

  31. X. Liu, T. Starr, A.F. Starr, W.J. Padilla, Phys. Rev. Lett. 104, 207403 (2010)

    Article  Google Scholar 

  32. J. Taniguchi, H. Ito, J. Mizuno, T. Saito (eds.), Nanoimprint Technology: Nanotransfer for Thermoplastic and Photocurable Polymers (Wiley, Chichester, 2013)

    Google Scholar 

  33. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995)

    Article  CAS  Google Scholar 

  34. J. Haisma, M. Verheijen, K. can den Heuvel, J. van den Berg, J. Vac. Sci. Technol. B 14, 4124 (1996)

    Article  CAS  Google Scholar 

  35. M.D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Appl. Phys. Lett. 84, 5299 (2004)

    Article  CAS  Google Scholar 

  36. T. Nishino, N. Fujii, H. Miyake, T. Yukawa, J. Sakamoto, R. Suzuki, H. Kawata, Y. Hirai, J. Photopolym. Sci. Technol. 23, 87 (2010)

    Article  CAS  Google Scholar 

  37. A. Hiraki, E. Lugujjo, J.W. Mayer, J. Appl. Phys. 43, 3643 (1972)

    Article  CAS  Google Scholar 

  38. B. Choi, M. Iwanaga, H.T. Miyazaki, K. Sakoda, Y. Sugimoto, J. Micro/Nanolith. MEMS MOEMS 13, 023007 (2014)

    Article  Google Scholar 

  39. B. Choi, M. Iwanaga, H.T. Miyazaki, K. Sakoda, Y. Sugimoto, Appl. Phys. Lett. 105, 201106 (2014)

    Article  Google Scholar 

  40. M. Nakao, M. Yamaguchi, S. Yabu, J. Nonlinear Opt. Phys. Mater. 19, 773 (2010)

    Article  CAS  Google Scholar 

  41. M. Elwenspoek, H.V. Jansen, Silicon Micromachining (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  42. H.T. Miyazaki, Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006)

    Article  Google Scholar 

  43. A.V. Whitney, J.W. Elam, S. Zou, A.V. Zinovev, P.C. Stair, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. B 109, 20522 (2005)

    Article  CAS  Google Scholar 

  44. S. Kataza, K. Ishibashi, M. Kokubo, H. Goto, J. Mizuno, S. Shoji, Jpn. J. Appl. Phys. 48, 06FH21 (2009)

    Article  Google Scholar 

  45. N. Moelders, M.U. Pralle, M.P. McNeal, I. Puscasu, L. Last, W. Ho, A.C. Greenwald, J.T. Daly, E.A. Johnson, T. George, Mat. Res. Soc. Symp. Proc. 729, U5.2 (2002)

    Google Scholar 

  46. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, Nat. Photon. 6, 535 (2012)

    Article  Google Scholar 

  47. T. Inoue, M. De Zoysa, T. Asano, S. Noda, Nat. Mater. 13, 928 (2014)

    Article  CAS  Google Scholar 

  48. X. Liu, W.J. Padilla, Adv. Opt. Mater. 1, 559 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki T. Miyazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyazaki, H.T. (2019). UV-Nanoimprinted Metasurface Thermal Emitters for Infrared CO2 Sensing. In: Sakoda, K. (eds) Electromagnetic Metamaterials. Springer Series in Materials Science, vol 287. Springer, Singapore. https://doi.org/10.1007/978-981-13-8649-7_5

Download citation

Publish with us

Policies and ethics