Skip to main content

Photonic Dirac Cones and Relevant Physics

  • Chapter
  • First Online:
Electromagnetic Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 287))

  • 1113 Accesses

Abstract

In this chapter, we derive a necessary and sufficient condition for materializing the photonic Dirac cone, which is an isotropic linear dispersion relation, on the \(\varGamma \) point of periodic metamaterials and photonic crystals by the \(\mathbf{k}\cdot \mathbf{p}\) perturbation theory and the group theory. We analyze the coupling between the Dirac-cone modes in metamaterials/photonic crystal slabs and the free-space modes by the Green function method, and prove that the propagation direction of the Dirac-cone modes in the slab can be controlled by the polarization of the incident wave. We further analyze the shapes of dispersion curves of the slab modes in the presence of diffraction loss and show that the group velocity of the slab modes exceeds the light velocity in free space. This problem of superluminal propagation is often found for non-Hermitian systems. Finally, we extend our discussion to electronic waves and prove that we can also materialize the Dirac cone on the \(\varGamma \) point of periodically modulated quantum wells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Sanada, C. Caloz, T. Itoh, Characteristics of the composite right/left-handed transmission lines. IEEE Microw. Wirel. Compon. Lett. 14, 68–70 (2004)

    Article  Google Scholar 

  2. C. Caloz, A. Sanada, T. Itoh, A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans. Microw. Theory Tech. 52, 980 (2004)

    Article  Google Scholar 

  3. A. Sanada, C. Caloz, T. Itoh, Planar distributed structures with negative refractive index. IEEE Trans. Microw. Theory Tech. 52, 1252 (2004)

    Article  Google Scholar 

  4. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, 2005)

    Google Scholar 

  5. K. Sakoda, H.-F. Zhou, Role of structural electromagnetic resonances in a steerable left-handed antenna. Opt. Express 18, 27371–27386 (2010)

    Article  Google Scholar 

  6. K. Sakoda, Dirac cone in two- and three-dimensional metamaterials. Opt. Express 20, 3898–3917 (2012)

    Article  Google Scholar 

  7. K. Sakoda, Double Dirac cones in triangular-lattice metamaterials. Opt. Express 20, 9925–9939 (2012)

    Article  Google Scholar 

  8. J. Mei, Y. Wu, C.T. Chan, Z.-Q. Zhang, First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals. Phys. Rev. B 86, 035141 (2012)

    Google Scholar 

  9. K. Sakoda, Proof of the universality of mode symmetries in creating photonic Dirac cones. Opt. Express 20, 25181–25194 (2012)

    Article  Google Scholar 

  10. X. Huang, Y. Lai, Z.H. Hang, H. Zheng, C.T. Chan, Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 10, 582–586 (2011)

    Article  CAS  Google Scholar 

  11. M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using \(\varepsilon \)-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006)

    Google Scholar 

  12. A. Alu, M.G. Silveirinha, A. Salandrino, N. Engheta, Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007)

    Google Scholar 

  13. K. Sakoda, Polarization-dependent continuous change in the propagation direction of Dirac-cone modes in photonic crystal slabs. Phys. Rev. A 90, 013835 (2014)

    Google Scholar 

  14. K. Sakoda, Optical Properties of Photonic Crystals, 2nd edn. (Springer, Berlin, 2004)

    Google Scholar 

  15. T. Inui, Y. Tanabe, Y. Onodera, Group Theory and Its Applications in Physics (Springer, Berlin, 1990)

    Chapter  Google Scholar 

  16. K. Sakoda, H. Takeda, Dirac cones in photonic crystal slabs, in Abstract Book of 10th International Symposium of Modern Optics and Its Applications, Bandung (2015), pp. 68–69

    Google Scholar 

  17. See, for example, M. Tanaka, M. Fujiwara, H. Ikegami, Propagation of a Gaussian wave packet in an absorbing medium. Phys. Rev. A 34, 4851–4858 (1986)

    Article  CAS  Google Scholar 

  18. T. Ochiai, K. Sakoda, Dispersion relation and optical transmittance of a hexagonal photonic crystal slab. Phys. Rev. B 63, 125107 (2001)

    Google Scholar 

  19. Y. Yao, K. Sakoda, Dirac cones in periodically modulated quantum wells. J. Phys. Soc. Jpn. 85, 065002 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Sakoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sakoda, K. (2019). Photonic Dirac Cones and Relevant Physics. In: Sakoda, K. (eds) Electromagnetic Metamaterials. Springer Series in Materials Science, vol 287. Springer, Singapore. https://doi.org/10.1007/978-981-13-8649-7_16

Download citation

Publish with us

Policies and ethics