Skip to main content

Magnetochiral Metamolecules for Microwaves

  • Chapter
  • First Online:
Electromagnetic Metamaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 287))

Abstract

This chapter overviews magnetochiral (MCh) effects for the X-band microwaves by a single metamolecule consisting of a copper chiral structure and a ferrite rod. The directional birefringence due to the MCh effects is induced at the resonant optical activity frequencies by applying a weak DC magnetic field of 1 mT and increased with the magnetic field. The nonreciprocal differences in refractive indices by the MCh effects are evaluated to be \(10^{-3}\) at 200 mT, which is much larger than that observed in natural chiral molecules at the visible frequencies. Moreover, the enhanced MCh effects can be obtained at ferromagnetic resonance frequencies by the ferrite rod in the metamolecule. The present study paves the way toward the realization of synthetic gauge fields for electromagnetic waves and the emergence of meta material-science using microwave metamaterials. Furthermore, higher frequencies including the visible region are accessible by our concept, in which an interaction between magnetism and chirality in the metamaterials is realized without intrinsic electronic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Hecht, Optics (Pearson Education Limited, 2013)

    Google Scholar 

  2. J.A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2005)

    Google Scholar 

  3. N. Berova, K. Nakanishi, R.W. Woody, Circular Dichroism: Principles and Applications, 2nd edn. (Wiley-VCH, 2000)

    Google Scholar 

  4. N.B. Baranova, Y.V. Bogdanov, B.Y. Zel’dovich, Opt. Commun. 22, 243 (1977)

    Google Scholar 

  5. V.A. Markelov, M.A. Novikov, A.A. Turkin, Pis’ma Zh. Eksp. Teor. Fiz. 25, 404 (1977) [JETP Lett. 25, 378 (1977)]

    Google Scholar 

  6. G. Wagnière, M. Meier, Chem. Phys. Lett. 93, 78 (1982)

    Article  Google Scholar 

  7. L.D. Barron, J. Vrbancich, Mol. Phys. 51, 715 (1984)

    Article  CAS  Google Scholar 

  8. G.L.J.A. Rikken, E. Raupach, Nature 405, 932 (2000)

    Article  CAS  Google Scholar 

  9. G.L.J.A. Rikken, E. Raupach, Nature 390, 493 (1997)

    Article  CAS  Google Scholar 

  10. G.L.J.A. Rikken, E. Raupach, Phys. Rev. E 58, 5081–5084 (1998)

    Article  CAS  Google Scholar 

  11. V. Krstić, S. Roth, M. Burghard, K. Kern, G.L.J.A. Rikken, J. Chem. Phys. 117, 11315 (2002)

    Article  Google Scholar 

  12. V.A. Sautenkov, Y.V. Rostovtsev, H. Chen, P. Hsu, G.S. Agarwal, M.O. Scully, Phys. Rev. Lett. 94, 233601 (2005)

    Google Scholar 

  13. P. Kleindienst, G.H. Wagnière, Chem. Phys. Lett. 288, 89 (1998)

    Article  CAS  Google Scholar 

  14. M. Vallet, R. Ghosh, A. Le Floch, T. Ruchon, F. Bretenaker, J.-Y. Thépot, Phys. Rev. Lett. 87, 183003 (2001)

    Article  Google Scholar 

  15. S. Eslami, J.G. Gibbs, Y. Rechkemmer, J. van Slageren, M. Alarćn-Correa, T.-C. Lee, A.G. Mark, G.L.J.A. Rikken, P. Fischer, ACS Photon. 1, 1231 (2014)

    Article  CAS  Google Scholar 

  16. G. Armelles, A. Cebollada, H.Y. Feng, A. García-Martín, D. Meneses-Rodríguez, J. Zhao, H. Giessen, ACS Photon. 2, 1272 (2015)

    Article  CAS  Google Scholar 

  17. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)

    Article  CAS  Google Scholar 

  18. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  CAS  Google Scholar 

  19. C. Train, R. Gheorghe, V. Krstic̀, L.-M. Chamoreau, N.S. Ovanesyan, G.L.J.A. Rikken, M. Gruselle, M. Verdaguer, Nature Mater. 7, 729–734 (2008)

    Article  CAS  Google Scholar 

  20. I. Kézsmárki, N. Kida, H. Murakawa, S. Bordàcs, Y. Onose, Y. Tokura, Phys. Rev. Lett. 106, 057403 (2011)

    Article  Google Scholar 

  21. S. Bordàcs, I. Kézsmárki, D. Szaller, L. Demkó, N. Kida, H. Murakawa, Y. Onose, R. Shimano, T. Rõõm, U. Nagel, S. Miyahara, N. Furukawa, Y. Tokura, Nature Phys. 8, 734–738 (2012)

    Article  Google Scholar 

  22. M. Mochizuki, S. Seki, Phys. Rev. B 87, 0134403 (2013)

    Article  Google Scholar 

  23. I. Kézsmárki, D. Szaller, S. Bordàcs, V. Kocsis, Y. Tokunaga, Y. Taguchi, H. Murakawa, Y. Tokura, H. Engelkamp, T. Rõõm, U. Nagel, Nature Commun. 5, 3203 (2014)

    Article  Google Scholar 

  24. S. Tomita, K. Sawada, A. Porokhnyuk, T. Ueda, Phys. Rev. Lett. 113, 235501 (2014)

    Article  Google Scholar 

  25. S. Tomita, H. Kurosawa, K. Sawada, T. Ueda, Phys. Rev. B 95, 085402 (2017)

    Article  Google Scholar 

  26. K. Sawada, N. Nagaosa, Phys. Rev. Lett. 95, 237402 (2005)

    Article  Google Scholar 

  27. K. Fang, Z. Yu, S. Fan, Nature Photon. 6, 782 (2012)

    Article  CAS  Google Scholar 

  28. S. Tomita, H. Kurosawa, T. Ueda, K. Sawada, J. Phys. D Appl. Phys. 51, 083001 (2018)

    Article  Google Scholar 

  29. S. Tomita, K. Sawada, S. Nagai, A. Sanada, N. Hisamoto, T. Ueda, Phys. Rev. B 96, 165425 (2017)

    Article  Google Scholar 

  30. N. Hisamoto, T. Ueda, K. Sawada, S. Tomita, Phys. Rev. B 97, 085105 (2018)

    Article  CAS  Google Scholar 

  31. O.N. Singh, A. Lakhtakia (eds.), Electromagnetic Fields in Unconventional Materials and Structures (Wiley-Interscience, 2004)

    Google Scholar 

  32. K.F. Lindman, Ann. Phys. 368, 621 (1920)

    Article  Google Scholar 

  33. C.L. Hogan, Bell Syst. Tech. J. 31, 1 (1952)

    Article  Google Scholar 

  34. T. Ueda, S. Yamamoto, Y. Kado, T. Itoh, IEEE Trans. Microw. Theory Tech. 60, 3043 (2012)

    Article  Google Scholar 

  35. T. Kodama, S. Tomita, N. Hosoito, H. Yanagi, Appl. Phys. A 122, 41 (2016)

    Article  Google Scholar 

  36. T. Kodama, S. Tomita, T. Kato, D. Oshima, S. Iwata, S. Okamoto, N. Kikuchi, O. Kitakami, N. Hosoito, H. Yanagi, Phys. Rev. Appl. 6, 024016 (2016)

    Article  Google Scholar 

  37. T. Kodama, Y. Kusanagi, S. Okamoto, N. Kikuchi, O. Kitakami, S. Tomita, N. Hosoito, H. Yanagi, Phys. Rev. Appl. 9, 054025 (2018)

    Article  CAS  Google Scholar 

  38. G.L.J.A. Rikken, J. Fölling, P. Wyder, Phys. Rev. Lett. 87, 236602 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hangyo, K. Sakoda, and A. Porokhnyuk for valuable discussion. The authors acknowledge financial support of this work by JSPS/MEXT KAKENHI (No. 22109002, No. 22109005, No. 26287065, and No. 17K19034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tomita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomita, S., Sawada, K., Kurosawa, H., Ueda, T. (2019). Magnetochiral Metamolecules for Microwaves. In: Sakoda, K. (eds) Electromagnetic Metamaterials. Springer Series in Materials Science, vol 287. Springer, Singapore. https://doi.org/10.1007/978-981-13-8649-7_14

Download citation

Publish with us

Policies and ethics