Skip to main content

Abstract

Sheepgrass is a cross-pollination and self-incompatible plant. In the natural habitat, the asexual reproduction of sheepgrass occupies the absolute superiority, and the sexual reproductive capacity is weak. The sexual reproduction characteristics of sheepgrass are based on the pollination process and seed development. The flower of sheepgrass has two glumes and lodicules, three stamens, and a pistil, with two-lobed stigma and orange anthers. The development of microspore is similar to the male gametophytes of common graminaceous plants such as wheat. Sheepgrass flowers bloom at about 2 months after turning green which can vary in regions. During seed development, the color, vigor, and weight of seeds are the indicators of seed maturity. Sheepgrass is highly self-incompatible, and the seed setting rate of sheepgrass can be affected by various environmental factors rather than the microsporogenesis and pollen grain development, suggesting feasible methods in breeding and production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen AM, Lexer C, Hiscock SJ (2010) Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas. Plant Physiol 154(3):1347–1360

    Article  CAS  Google Scholar 

  • Baumann U, Juttner J, Bian XY et al (2000) Self-incompatibility in the grasses. Ann Bot 85(Supplement A):203–209

    Article  CAS  Google Scholar 

  • Blair JM, Parmelee RW, Beare MH (1990) Decay rates, nitrogen fluxes, and decomposer communities of single- and mixed-species foliar litter. Ecology 71(5):1976–1985

    Article  Google Scholar 

  • Chapman LA, Goring DR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61(7):1987–1999

    Article  CAS  Google Scholar 

  • Cheng FY, Jin ZL (1988) Cell morphology of the development of gametophyte in millet. Acta Botan Boreali-Occiden Sin 3:155–161+207

    Google Scholar 

  • Du JC (1998) Study on improving the fruiting of Leymus chinensis by remote hybridization. Grassl China 4:5–8

    Google Scholar 

  • Duan XG, Fan JL (1984) Study on meiosis of Leymus chinensis PCM. Grassl China 1:66–67

    Google Scholar 

  • Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereal L.) via comparative genetics. Theor Appl Genet 110(5):832–845

    Article  CAS  Google Scholar 

  • Heslop-Harrison J (1982) Pollen-stigma interaction and cross-incompatibility in the grasses. Science 215(4538):1358–1364

    Article  CAS  Google Scholar 

  • Hiscock SJ, Bright J, McInnis SM et al (2007) Signaling on the stigma: potential new roles for ROS and NO in plant signaling. Plant Signal Behav 2(1):23–24

    Article  Google Scholar 

  • Hu SY (1962) Morphology and cytological observation of wheat fertilization. Acta Bot Sin 10:299–308

    Google Scholar 

  • Huang ZH, Zhu JM, Mu XJ et al (2004) Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Ann Bot 93(3):295–301

    Article  Google Scholar 

  • Kakeda K (2008) Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley. Mol Gen Genomics 280(6):509–519

    Article  CAS  Google Scholar 

  • Kakeda K (2009) S locus-linked F-box gene expressed in anthers of Hordeum bulbosum. Plant Cell Rep 28(9):1453–1460

    Article  CAS  Google Scholar 

  • Klaas M, Yang BC, Bosch M et al (2011) Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium. Ann Bot 108(4):677–685

    Article  CAS  Google Scholar 

  • Li XM, Nield J, Hayman D et al (1994) Cloning a putative self-incompatibility gene from the pollen of the grass Phalaris coerulescens. Plant Cell 6(12):1923–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XM, Nield J, Hayman D et al (1996) A self-fertile mutant of Phalaris produces an S protein with reduced thioredoxin activity. Plant J 10(3):505–513

    Article  CAS  Google Scholar 

  • Li M, Xu W, Yang W et al (2007) Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice (Oryza sativa L.). Plant Physiol 144(4):1797–1812

    Article  CAS  Google Scholar 

  • Li XY, Mu CS, Wang Y et al (2009) Study on the regulation of different exogenous hormones on the quantitative traits of sexual reproduction of Leymus chinensis. Chin J Grassl 31:17–22

    Google Scholar 

  • Li XY, Lin JX, Mu CS et al (2012) Effects of exogenous plant hormone on seed formation and germination of Leymus chinensis. Chin Agric Sci Bull 28:11–14

    Google Scholar 

  • Liu GS, Qi DM (2004) Research progress on the biology of Leymus chinensis. Acta Pratacul Sin 13(5):6–11

    CAS  Google Scholar 

  • Liu GS, Li XF et al (2011) Leymus chinensis germplasm resources research. Science Press, Beijing

    Google Scholar 

  • Lu WK, Guo ZC (1984) Cytological observation of microsporogenesis and pollen development in wheat. J Integr Plant Biol 1:28–33+119–120

    Google Scholar 

  • Ma HL (1985) Relationship between microspore development and fruiting of Leymus chinensis. J Inn Mong Agric For Coll 2:97–104

    Google Scholar 

  • Ma HL, Suo PF (2006) Review of the research on the biological biology of Leymus chinensis. Grassl Prataculture 18:1–7

    Google Scholar 

  • Ma HL, Wan T, Sun QZ (1983) Observation on heading characteristics and panicle differentiation process of Leymus chinensis. Grassl Prataculture 1:17–24

    Google Scholar 

  • Ma HL, Wan T, Wang FG (1984) Reasons for the firmness and low seed setting rate of Leymus chinensis. Grassl China 3:15–20

    Google Scholar 

  • Ma HL, Yun JF, Wan T et al (1992) Biological characteristics and main economic traits of Leymus chinensis. Grassl China 2:1–5

    Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw Hill, New York

    Book  Google Scholar 

  • Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267

    Article  CAS  Google Scholar 

  • Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16(Suppl):S214–S227

    Article  CAS  Google Scholar 

  • Pan GF, Sun ZL (1986) Study on fertility and fruiting of meiosis PCM meiosis pollen. Grassl China 3:7–14

    Google Scholar 

  • Peng XB, Sun MX (2007) Molecular and cellular biological mechanisms of fertilization of angiosperms. Chin Bull Bot 24(3):355–371

    CAS  Google Scholar 

  • Poehlman JM (1979) Breeding field crops, 2nd edn. Avi Publishing Company, Westport

    Google Scholar 

  • Quiapim AC, Brito MS, Bernardes LA et al (2009) Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. Plant Physiol 149(3):1211–1230

    Article  CAS  Google Scholar 

  • Ren WW, Qian J, Zheng SZ (1999) A comparative study on genetic differentiation of Leymus chinensis in different geographic populations. Acta Ecol Sin 19(5):689–696

    Google Scholar 

  • Shinozuka H, Cogan NO, Smith KF et al (2010) Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility locus of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72(3):343–355

    Article  CAS  Google Scholar 

  • Sree Ramulu K, Carluccio F, de Nettancourt D et al (1977) Trisomics from triploid-diploid crosses in self-incompatible Lycopersicum peruvianum: I. Essential features of aneuploids and of self-compatible trisomics. Theor Appl Genet 50(3):105–119

    Article  CAS  Google Scholar 

  • Sun ZL (1989) Study on the phenomenon of meiosis and separation of Leymus chinensis. Grassl China 1:54–57

    Google Scholar 

  • Sun GZ, Tu LZ (1990) Double fertilization and embryo development of Leymus chinensis. J Inn Mong Univ (Nat Sci Ed) 21:572–577

    Google Scholar 

  • Sun GZ, Tu LZ (1991) Dynamics of polysaccharides in the development of endosperm and the development of caryopsis. J Inn Mong Univ (Nat Sci Ed) 21:522–527

    Google Scholar 

  • Swanson R, Clark T, Preuss D (2005) Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sex Plant Reprod 18(4):163–171

    Article  CAS  Google Scholar 

  • Teng NJ, Huang ZH, Mu XJ et al (2005) Microsporogenesis and pollen development in Leymus chinensis with emphasis on dynamic changes in callose deposition. Flora 200(3):256–263

    Article  Google Scholar 

  • Teng NJ, Chen T, Jin BA et al (2006) Abnormalities in pistil development result in low seed set in Leymus chinensis (Poaceae). Flora 201(8):658–667

    Article  Google Scholar 

  • Tung CW, Dwyer KG, Nasrallah ME et al (2005) Genome-wide identification of genes expressed in Arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiol 138(2):977–989

    Article  CAS  Google Scholar 

  • Wang ML (1998) Study on the fruiting characteristics of Leymus chinensis. Grassl China 1:18–20

    Google Scholar 

  • Wang KP, Lou YJ, Cheng WG et al (2005) Study on dynamic changes of nutrients in Jisheng Leymus chinensis. Pratacultual Sci 22(8):24–27

    Google Scholar 

  • Wang JF, Mu CS, Zhang JT et al (2008) Effect of fertilizer on sexual reproduction of Leymus chinensis. Acta Pratacul Sin 17(3):53–58

    Google Scholar 

  • Wang JF, Li XY, Gao S et al (2013) Impacts of fall nitrogen application on seed production in Leymus chinensis, a rhizomatous perennial grass. Agron J 105(5):1378–1384

    Article  CAS  Google Scholar 

  • Wei X, Shen JH (2003) Observation on the development of Leymus chinensis and microspores and the development of female and male gametophytes. Acta Botan Boreali-Occiden Sin 23:2058–2066

    Google Scholar 

  • Wei X, Shen JH (2004) Fertilization of Leymus chinensis and observation of its early development of embryo and endosperm. Acta Botan Boreali-Occiden Sin 24:31–37

    Google Scholar 

  • Xu XH, Chen H, Sang YL et al (2012) Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas. BMC Genomics 13:294

    Article  CAS  Google Scholar 

  • Yang YF, Zhang BT (1992) An analysis of seasonal variation of vegetative propagation and the relationships between biomass and population density of Aneurolepidium chinense in Songnen Plain of China. Acta Bot Sin 34(6):443–449

    Google Scholar 

  • Yang YF, Zhu TC (1989) A preliminary study on seed production of Aneurolepidium chinense population. Acta Phytoecologica Geobot Sin 13(1):73–78

    Google Scholar 

  • Yang YF, Liu GC, Zhang BT (1995) An analysis of age structure and the strategy for asexual propagation of Aneurolepidium chinense population. Acta Bot Sin 37(2):147–153

    Google Scholar 

  • Yang YF, Yang LM, Zhang BT et al (2001) Relationships between seed production in Leymus chinensis and climate variation in natural meadows in Northeast China. Acta Phytoecologica Sin 25(3):337–343

    Google Scholar 

  • Yang B, Thorogood D, Armstead I et al (2008) How far are we from unravelling self-incompatibility in grasses? New Phytol 178(4):740–753

    Article  CAS  Google Scholar 

  • Yang B, Thorogood D, Armstead IP et al (2009) Identification of genes expressed during the self-incompatibility response in perennial ryegrass (Lolium perenne L.). Plant Mol Biol 70(6):709–723

    Article  CAS  Google Scholar 

  • Zhang WD, Liu GS, Liu J et al (2002) Preliminary study on self-incompatibility of Leymus chinensis. Acta Agrestia Sin 10:287–292

    Google Scholar 

  • Zhang Y, Hou JH, Zhang Z et al (2006) Establishment of cell suspension system of Leymus chinensis and gray Leymus F1 generation and plant regeneration. Acta Botan Boreali-Occiden Sin 26:937–941

    CAS  Google Scholar 

  • Zhang ZJ, Mu CS, Li XY et al (2008) Dynamic study on meristem differentiation of the root bud of Leymus chinensis. Acta Pratacul Sin 17:71–79

    CAS  Google Scholar 

  • Zhang YJ, Zhao ZH, Xue YB (2009) Roles of proteolysis in plant self-incompatibility. Annu Rev Plant Biol 60:21–42

    Article  CAS  Google Scholar 

  • Zhao QL, Tu LZ (1993) Microsporogenesis and male gametophyte formation in Leymus chinensis. J Inn Mong Univ (Nat Sci Ed) 21:55–65

    Google Scholar 

  • Zhao CX, Yang GF, Zhang GT et al (1986) Study on germination rate of Leymus chinensis seeds. Grassl China 5:54–56

    CAS  Google Scholar 

  • Zhou QY, Jia JT, Huang X et al (2014) The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics 15:399

    Article  Google Scholar 

  • Zhu TC (2004) Yang-cao biological ecology. Jilin Science and Technology Press, Changchun

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junting Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jia, J., Li, X., Qi, D. (2019). Sexual Reproduction of Sheepgrass (Leymus chinensis). In: Liu, G., Li, X., Zhang, Q. (eds) Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals. Springer, Singapore. https://doi.org/10.1007/978-981-13-8633-6_4

Download citation

Publish with us

Policies and ethics