Skip to main content

Cloning and Function Research of Sheepgrass (Leymus chinensis) Genes

  • Chapter
  • First Online:
Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals
  • 237 Accesses

Abstract

Sheepgrass is a dominant, perennial forage crop that has extensive plasticity in adapting to various harsh environments, such as high salinity, drought, and cold stresses. Based on the data from 454 high-throughput sequencing (GS FLX) exposure to abiotic stress, a series of stress-responsive genes from sheepgrass have been identified and characterized, including LcDREB2, LcDREB3a, LcDREB21, LcSAIN1, LcSAIN2, LcMYB1, LcWRKY5, LcFIN1, LcP5CSs, LcSAMDCs, LcSAP, LcPIP, and so on; these genes play different role in abiotic stresses of salinity, drought, and cold. Otherwise, the sucrose synthesis and transport-related genes were also isolated and identified, i.e., LcSUT1, etc. The research on the gene function of sheepgrass provide understanding for the mechanism of sheepgrass tolerance and adaption to adverse environments, and these genes are potential gene resource for improving abiotic tolerance and sucrose transport in sheepgrass and other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Urao T, Ito T et al (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  Google Scholar 

  • Alexandrova KS, Conger BV (2002) Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci 162:301–307

    Article  CAS  Google Scholar 

  • Baiges I, Schäffner AR, Affenzeller MJ et al (2002) Plant aquaporins. Physiol Plant 115:175–182

    Article  CAS  Google Scholar 

  • Berthier A, Desclos M, Amiard V et al (2009) Activation of sucrose transport in defoliated Lolium perenne L.: an example of apoplastic phloem loading plasticity. Plant Cell Physiol 50:1329–1344

    Article  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Campos JF, Cara B, Pérez-Martín F et al (2016) The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. Plant Biotechnol J 14:1345–1356

    Article  CAS  Google Scholar 

  • Chen SY, Huang X, Yan XQ et al (2013) Transcriptome analysis in Sheepgrass (Leymus chinensis): a dominant perennial grass of the Eurasian Steppe. PLoS One 8:e67974

    Article  CAS  Google Scholar 

  • Cheng LQ, Li XX, Huang X et al (2013) Overexpression of Leymus chinensis R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem 70:252–260

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu JH, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  Google Scholar 

  • Daie J (1989) Phloem loading of sucrose: update and opportunities in molecular biology. Plant Mol Biol Report 7:106–115

    Article  CAS  Google Scholar 

  • Doidy J, Tuinen DV, Lamotte O et al (2012) The Medicago truncatula sucrose transporter family: characterization and implication of key member in carbon partitioning towards arbuscular mycorrhizal fungi. Mol Plant 5:1346–1358

    Article  CAS  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y et al (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci U S A 103:8281–8286

    Article  CAS  Google Scholar 

  • Duan MR, Nan J, Liang YH et al (2007) DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res 35:1145–1154

    Article  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S et al (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  Google Scholar 

  • Gao Q, Li XX, Jia JT et al (2016) Overexpression of a novel cold-responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants. Plant Biotechnol J 14:861–874

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    Article  CAS  Google Scholar 

  • Guo HY, Wang YC, Wang LQ et al (2017) Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnol J 15:107–121

    Article  CAS  Google Scholar 

  • He YN, Li W, Lv J et al (2012) Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522

    Article  CAS  Google Scholar 

  • Housley TL, Volenec JJ (1988) Fructan content and synthesis in leaf tissue of Festuca arundinacea. Plant Physiol 86:1247–1251

    Article  CAS  Google Scholar 

  • Ibraheem O, Hove RM, Bradley G (2008) Sucrose assimilation and the role of sucrose transporters in plant wound response. Afr J Biotechnol 7:4850–4855

    CAS  Google Scholar 

  • Ishitani M, Xiong L, Lee H et al (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10:1151–1161

    Article  CAS  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  Google Scholar 

  • Kühn C, Grof C (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13:288–298

    Article  Google Scholar 

  • Li XX, Gao Q, Liang Y et al (2013a) A novel salt-induced gene from sheepgrass, LcSAIN2, enhances salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem 64:52–59

    Article  Google Scholar 

  • Li XX, Hou SL, Gao Q et al (2013b) LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic arabidopsis and rice. Plant Cell Physiol 54:1172–1185

    Article  CAS  Google Scholar 

  • Liu JY, Yang XN, Yang XZ et al (2017a) Isolation and characterization of LcSAP, a Leymus chinensis gene which enhances the salinity tolerance of Saccharomyces cerevisiae. Mol Biol Rep 44:5–9

    Article  CAS  Google Scholar 

  • Liu ZJ, Liu PP, Qi DM et al (2017b) Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. J Plant Physiol 211:90–99

    Article  CAS  Google Scholar 

  • Ma PD, Liu JY (2012) Isolation and characterization of a novel plasma membrane intrinsic protein gene, LcPIP1, in Leymus chinensis that enhances salt stress tolerance in Saccharomyces cerevisiae. Appl Biochem Biotechnol 166:479–485

    Article  CAS  Google Scholar 

  • Ma XY, Peng XJ, Su M et al (2012) Phylogeny and function characterization of DREB transcription factors in Leymus chinensis. Acta Pratacul Sin 21:190–197

    Google Scholar 

  • Ma T, Li ML, Zhao AG et al (2014) LcWRKY5: an unknown function gene from sheepgrass improves drought tolerance in transgenic Arabidopsis. Plant Cell Rep 33:1507–1518

    Article  CAS  Google Scholar 

  • Medina J, Catala R, Salinas J (2011) The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Sci 180:3–11

    Article  CAS  Google Scholar 

  • Mitsuya S, Kuwahara J, Ozaki K, Saeki E et al (2011) Isolation and characterization of a novel peroxisomal choline monooxygenase in barley. Planta 234:1215–1226

    Article  CAS  Google Scholar 

  • Mitsuya S, Tsuchiya A, Kono-Ozaki KF et al (2015) Functional and expression analyses of two kinds of betaine aldehyde dehydrogenases in a glycinebetaine-hyperaccumulating graminaceous halophyte, Leymus chinensis. Springerplus 4:202

    Article  Google Scholar 

  • Morvan-Bertrand A, Boucaud J, Prud’homme MP (1999) Influence of initial levels of carbohydrates, fructans, nitrogen, and soluble proteins on regrowth of Lolium perenne L. cv. Bravo following defoliation. J Exp Bot 50:1817–1826

    Article  CAS  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW et al (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656

    Article  CAS  Google Scholar 

  • Peng XJ, Ma XY, Fan WH et al (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502

    Article  CAS  Google Scholar 

  • Peng XJ, Zhang LX, Zhang LX et al (2013) The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tissue Organ Cult 113:245–256

    Article  CAS  Google Scholar 

  • Pennisi E (2008) Plant genetics. Getting to the root of drought responses. Science 320:173

    Article  Google Scholar 

  • Rathinasabapathi B, Burnet M, Russell BL et al (1997) Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A 94:3454–3458

    Article  CAS  Google Scholar 

  • Richard W, Alexandra C, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plant Physiol 113:1009–1013

    Article  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133

    Article  CAS  Google Scholar 

  • Ruan MB, Guo X, Wang B et al (2017) Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). J Exp Bot 68:3657–3672

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE et al (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  Google Scholar 

  • Seki M, Umezawa T, Urano K et al (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  Google Scholar 

  • Slewinski TL, Meeley R, Braun DM (2009) Sucrose transporter 1 functions in phloem loading in maize leaves. J Exp Bot 60:881–892

    Article  CAS  Google Scholar 

  • Soltesz A, Smedley M, Vashegyi I et al (2013) Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exp Bot 64:1849–1862

    Article  CAS  Google Scholar 

  • Strizhov N, Abrahám E, Okrész L et al (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    CAS  PubMed  Google Scholar 

  • Su M, Li XX, Li XF et al (2013) Molecular characterization and defoliation-induced expression of a sucrose transporter lcsut1 gene in sheep grass (Leymus chinensis). Plant Mol Biol Report 31:1184–1191

    Article  CAS  Google Scholar 

  • Sun C, Palmqvist S, Olsson H et al (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar responsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  CAS  Google Scholar 

  • Sun YP, Wang FW, Wang N et al (2013) Transcriptome exploration in Leymus chinensis under saline-alkaline treatment using 454 pyrosequencing. PLoS One 8:e53632

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  Google Scholar 

  • Szekely G, Abraham E, Cseplo A et al (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    Article  CAS  Google Scholar 

  • Tyagi H, Jha S, Sharma M et al (2014) Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Sci 225:68–76

    Article  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  Google Scholar 

  • Wang XL, Liu D, Li ZQ (2012) Effects of the coordination mechanism between roots and leaves induced by root-breaking and exogenous cytokinin spraying on the grazing tolerance of ryegrass. J Plant Res 125:407–416

    Article  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M et al (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17:944–956

    Article  CAS  Google Scholar 

  • Yang WJ, Nadolskaorczyk A, Wood KV et al (1995) Near-isogenic lines of maize differing for glycinebetaine. Plant Physiol 107:621–630

    Article  CAS  Google Scholar 

  • Zhang LC, Zhao GY, Jia JJ et al (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885

    Article  CAS  Google Scholar 

  • Zhao C, Lang Z, Zhu JK (2015) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20:466–468

    Article  CAS  Google Scholar 

  • Zhao PC, Liu PP, Yuan GXJ et al (2016) New insights on drought stress response by global investigation of gene expression changes in sheepgrass (Leymus chinensis). Front Plant Sci 7:954

    PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  Google Scholar 

  • Zhu XL, Liu SW, Meng C et al (2013) WRKY transcription factors in wheat and their induction by biotic and abiotic stress. Plant Mol Biol Report 31:1053–1067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, L., Peng, X., Su, M., Li, X., Gao, Q., Ma, X. (2019). Cloning and Function Research of Sheepgrass (Leymus chinensis) Genes. In: Liu, G., Li, X., Zhang, Q. (eds) Sheepgrass (Leymus chinensis): An Environmentally Friendly Native Grass for Animals. Springer, Singapore. https://doi.org/10.1007/978-981-13-8633-6_12

Download citation

Publish with us

Policies and ethics