Skip to main content

Seed Priming Alleviates Stress Tolerance in Rice (Oryza sativa L.)

  • Chapter
  • First Online:
Priming and Pretreatment of Seeds and Seedlings

Abstract

Seed priming is an age-old practice in agriculture. Seed germination and seedling growth can be improved through seed priming (seed hydration–dehydration–rehydration techniques) and seed coating with different living and nonliving substances. Seed priming is an age-old practice in agriculture dates to 1926 showed that rapid germination and seedling growth due to chlorine water priming. Seed priming break ups the seed cover, decreases inhibitor concentration in hull and endosperm and transforms the seeds into a higher state of activation. Both germination rate and seedling growth turn out to be fast and superior in primed seeds compared to non-primed seeds, while capsulated seed gets some essential ingredients required for fast and uniform germination from the coating substances. It is observed that different priming agents improve tolerance to excess and deficit water, salinity, metal toxicity and temperature and different biotic stresses in rice. Reports show that capsulated seeds with appropriate pelleting agents induce tolerance to abiotic stresses such as germination stage oxygen deficiency, cold, drought and salinity. Seed treatments have greater impact to stabilize rice yields under adverse conditions. In this chapter, physiological and biochemical status of primed seeds are discussed in relation to tolerance to diverse abiotic stresses in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

abscisic acid

ALA:

5-aminolevulinic acid

As:

arsenic

Bo:

boron

CaCl2:

calcium chloride

CAT:

catalase

Cd:

cadmium

CL:

chitosan-lignosulphonate polymer

Cr:

chromium

DNA:

deoxyribonucleic acid

E:

eugenol

GA:

gibberellic acid

GPX:

glutathione peroxidase

GSOD:

germination stage oxygen deficiency

H2O2:

hydrogen peroxide

Hsp70:

heat shock protein 70

IAA:

indole-3-acetic acid

KCl:

potassium chloride

KNO3:

potassium nitrate

LEA:

late embryogenesis abundant

MDA:

malondialdehyde

Mn:

manganese

mRNA:

messenger RNA

P:

phosphorus

PAs:

polyamines

Pb:

lead

PEG:

polyethylene glycol

RNA:

ribonucleic acid

ROS:

reactive oxygen species

RQ:

respiratory quotient

SA:

salicylic acid

Se:

selenium

SOD:

superoxide dismutase

SPD:

spermidine

SPM:

spermine

Zn:

zinc

References

  • Abichandani CT, Ramiah K (1951) Treatment of rice seed in nutrient solution as means of increasing yield. Curr Sci 20:270–271

    Google Scholar 

  • Afzal I, Butt A, Rehman HU, Basra AMA, Afzal A (2012) Alleviation of salt stress in fine aromatic rice by seed priming. Aust J Crop Sci 6:1401–1407

    CAS  Google Scholar 

  • Bai B, Shi B, Hou N, Cao Y, Meng Y, Bian H, Zhu M, Han N (2017) microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC Plant Biol 17:150. https://doi.org/10.1186/s12870-017-1095-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Basra SMA, Farooq M, Wahid A, Khan MB (2006) Rice seed invigoration by hormonal and vitamin priming. Seed Sci Technol 34:753–758

    Article  Google Scholar 

  • Basu RN, Pal P (1980) Control of rice seed deterioration by hydration-dehydration pretreatments. Seed Sci Technol 8:151–160

    Google Scholar 

  • Basu RN, Chattopadhyay K, Pal P (1974) Maintenance of seed viability in rice (Oryza sativa L.) and jute (Corchorus capsularis L. and C. olitorius L.). Indian Agric 18:75–79

    CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Nonogaki H (2017) Seed maturation and germination. In: Reference module in life sciences, Elsevier. isbn:9780128096338. https://doi.org/10.1016/B978-0-12-809633-8.05092-5

    Google Scholar 

  • Binang WB, Shiyam JO, Ntia JD (2012) Effect of seed priming method on agronomic performances and cost effectiveness of rainfed dry-seeded Nerica rice. Res J Seed Sci 5:136–143

    Article  Google Scholar 

  • Bradford KJ (1995) Water relations in seed germination. In: Kigel J, Galili G (eds) Seed development and germination. Arcel Dekker, New York, pp 351–396

    Google Scholar 

  • Brown PR, Tuan VV, Nhan DK, Dung LC, Ward J (2018) Influence of livelihoods on climate change adaptation for smallholder farmers in the Mekong delta Vietnam. Int J Agric Sustain 16:255–271

    Article  Google Scholar 

  • Bruce TJA, Matthes MC, Napier J, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Castañeda LMF, Genro C, Roggia I, Bender SS, Bender RJ, Pereira CN (2014) Innovative rice seed coating (Oryza sativa) with polymer nanofibres and microparticles using the electrospinning method. J Res Updat Polym Sci 3:33–39

    Google Scholar 

  • Cheng J, Wang L, Zeng P, He Y, Zhou R, Zhang H, Wang Z (2017) Identification of genes involved in rice seed priming in the early imbibition stage. Plant Biol 19:61–69

    Article  CAS  PubMed  Google Scholar 

  • Chunthaburee S, Sanitchon J, Pattanagul W, Theerakulpisut P (2014) Alleviation of salt stress in seedlings of black glutinous rice by seed priming with spermidine and gibberellic acid. Not Bot Horti Agrobot 42:405–413

    Article  CAS  Google Scholar 

  • Das KK, Panda D, Nagaraju M, Sharma SG, Sarkar RK (2004) Antioxidant enzymes and aldehyde releasing capacity of rice cultivars (Oryza sativa L.) as determinants of anaerobic seedling establishment capacity. Bulg J Plant Physiol 30:34–44

    CAS  Google Scholar 

  • Das SS, Karmakar P, Nandi AK, Mishra NS (2015) Small RNA mediated regulation of seed germination. Front Plant Sci 6:828. https://doi.org/10.3389/fpls.2015.00828

    Article  PubMed  PubMed Central  Google Scholar 

  • David BV (2008) Biotechnological approaches in IPM and their impact on environment. J Biopest 1:1–5

    Google Scholar 

  • de Barros AF, Pimentel LD, Araujo EF, de Macedo LR, Martinez HEP, Batista VAP, da PaixĂŁo MQ (2017) Super absorbent polymer application in seeds and planting furrow: it will be a new opportunity for rainfed agriculture. Semina CiĂŞn Agrár Londrina 38:1703–1714

    Article  Google Scholar 

  • de Guzman LEP, Aquino AL (eds) (2007) Longevity of hydro-primed rice seeds, Philipp J Crop Sci 32:77–88

    Google Scholar 

  • Dirk LMA, Griffen LA, Downie B, Bewley JD (1995) Multiple isozymes of endo-β-d-mannanase in dry and imbibed seeds. Phytochemistry 40:1045–1056

    Article  CAS  Google Scholar 

  • Ella ES, Dionisio-Sese ML, Ismail AM (2011) Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions. AoB Plants 2011:plr007. https://doi.org/10.1093/aobpla/plr007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Zhu T, Li M, He J, Huang R (2017) Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in Central China. J Healthcare Eng 2017:4124302. https://doi.org/10.1155/2017/4124302

    Article  Google Scholar 

  • Farooq M, Basra SMA, Afzal I, Khaliq A (2006a) Optimization of hydropriming techniques for rice seed invigoration. Seed Sci Technol 34:507–512

    Article  Google Scholar 

  • Farooq M, Basra SMA, Tabassum R, Afzal I (2006b) Enhancing the performance of direct seeded fine rice by seed priming. Plant Prod Sci 9:446–456

    Article  Google Scholar 

  • Farooq M, Basra SMA, Khan MB (2007) Seed priming improves growth of nursery seedlings and yield of transplanted rice. Arch Agron Soil Sci 53:315–326

    Article  Google Scholar 

  • Fenangad DB, Orge RF (2015) Simple seed coating technology for improved seedling establishment in direct-seeded rice. OIDA Int J Sustain Dev 8:35–42

    Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Gibson SI (2002) ABA and sugar interactions regulating development: “cross-talk” or “voices in a crowd”? Curr Opin Plant Biol 5:26–32

    Article  CAS  PubMed  Google Scholar 

  • Ghodrat V, Moradshahi A, Rousta MJ, Karampour A (2013) Improving yield and yield components of rice (Oryza sativa L.) by indolebutyric acid (IBA), gibberellic acid (GA3) and salicylic acid (SA) pre-sowing seed treatments. Am Eurasian J Agric Environ Sci 13:872–876

    Google Scholar 

  • Goswami A, Banerjee R, Raha S (2013) Drought resistance in rice seedlings conferred by seed priming. Protoplasma 250:1115–1129

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara M, Imura M, Mitsuishi S (1987) Oxidation-reduction state in the vicinity of the paddy rice seed sown into flooded soil. Jpn J Crop Sci 56:356–362

    Article  Google Scholar 

  • Hara Y (2017) Comparison of the effects of seed coating with tungsten and molybdenum compounds on seedling establishment rates of rice, wheat, barley, and soybean under flooded conditions. Plant Prod Sci 20:406–411

    Article  CAS  Google Scholar 

  • Harris D, Joshi A, Khan PA, Gothkar P, Sodhi PS (1999) On-farm seed priming in semi-arid agriculture: development and evaluation in maize, rice and chickpea in India using participatory methods. Exp Agric 35:15–29

    Article  Google Scholar 

  • Harris D, Pathan AK, Gothkar P, Joshi A, Chivasa W, Nyamudeza P (2001) On-farm seed priming: using participatory methods to revive and refine a key technology. Agric Syst 69:151–164

    Article  Google Scholar 

  • Hayashi M (1987) Relationship between endogenous germination inhibitors and dormancy in rice seeds. Jpn Agric Res Quart 21:153–161

    CAS  Google Scholar 

  • He D, Yang P (2013) Proteomics of rice seed germination. Front Plant Sci 4:246. https://doi.org/10.3389/fpls.2013.00246

    Article  PubMed  PubMed Central  Google Scholar 

  • High-qing Z, Ying-bin Z, Guo-chao X, Yuan-fu X (2007) Effect and mechanism of cold tolerant seed-coating agents on the cold tolerance of early indica rice seedlings. Agric Sci China 6:792–801

    Article  Google Scholar 

  • Hilhorst HWM, Toorop PE (1997) Review on dormancy, germinability, and germination in crop and weed seeds. Adv Agron 61:111–165

    Article  Google Scholar 

  • Hussain M, Farooq M, Lee D-J (2016a) Evaluating the role of seed priming in improving drought tolerance of pigmented and non-pigmented rice. J Agro Crop Sci 203:269–276

    Article  CAS  Google Scholar 

  • Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Cui K, Nie L (2016b) Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front Plant Sci 7:1125. https://doi.org/10.3389/fpls.2016.01125

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan FA, Hussain HA, Nie L (2016c) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in tice cultivars. Front Plant Sci 7:116. https://doi.org/10.3389/fpls.2016.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Illangakoon TK, Ella ES, Ismail AM, Marambe B, Keerthisena RSK, Bentota AP, Kulatunge S (2016) Impact of variety and seed priming on anaerobic germination-tolerance of rice (Oryza sativa L.) varieties in Sri Lanka. Trop Agric Res 28:26–37

    Article  Google Scholar 

  • Johnson SE, Lauren JG, Welch RM, Duxbury JM (2005) A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Exp Agric 41:427–448

    Article  CAS  Google Scholar 

  • Kalita J, Pradhan AK, Shandilya ZM, Tanti B (2018) Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Sci 25:235–249

    Article  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Ladha JK (2011) Direct seeding of rice: recent developments and future research needs. Adv Agron 111:297–413

    Article  Google Scholar 

  • Li X, Zhang L (2012) SA and PEG-induced priming for water stress tolerance in rice seedling. In: Zhu E, Sambath S (eds) Information technology and agricultural engineering, vol 134. Springer, Berlin/Heidelberg, pp 881–887

    Chapter  Google Scholar 

  • Mahajan G, Sarlach RS, Japinder S, Gill MS (2011) Seed priming effects on germination, growth and yield of dry direct-seeded rice. J Crop Improv 25:409–417

    Article  Google Scholar 

  • Matsushima K-I, Sakagami J-I (2013) Effects of seed hydropriming on germination and seedling vigor during emergence of rice under different soil moisture conditions. Am J Plant Sci 4:1584–1593

    Article  Google Scholar 

  • Mei J, Wang W, Peng S, Nie L (2017) Seed pelleting with calcium peroxide improves crop establishment of direct-seeded rice under waterlogging conditions. Sci Rep 7:4878. https://doi.org/10.1038/s41598-017-04966-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen DS, Sinah MN (1961) Germination inhibition in Oryza sativa and control by preplanting soaking treatments. Crop Sci 1:332–335

    Article  Google Scholar 

  • Mishra G, Patnaik SN (1959) Effect of coumarin on the germination and growth of rice seedlings. Nature 183:989–990

    Article  Google Scholar 

  • Mondo VHV, Nascente AS, Neves PDCF, Taillebois JE, Oliveira FHS (2016) Seed hydropriming in upland rice improves germination and seed vigor and has no effects on crop cycle and grain yield. Aust J Crop Sci 10:1534–1542

    Article  CAS  Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578

    Article  CAS  PubMed  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018) Rice seed priming with Se: a novel approach to mitigate as induced adverse consequences on growth, yield and as load in brown rice. J Hazard Mater 355:187–196

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Narsai R, Gouil Q, Secco D, Srivastava A, Karpievitch YV, Liew LC, Lister R, Mathew G, Lewsey MG, Whelan J (2017) Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genom Biol 18:172. https://doi.org/10.1186/s13059-017-1302-3

    Article  CAS  Google Scholar 

  • Ota Y, Nakayama M (1970) Effect of seed coating with calcium peroxide on germination under submerged condition in rice plant. Proc Crop Sci Soc Jpn 39:535–536

    Article  Google Scholar 

  • Palupi T, Ilyas SAS, Machmud M, Widajati E (2017) Effect of seed coating with biological agents on seed quality of rice. Biodiversitas 18:727–732

    Article  Google Scholar 

  • Panda D, Rao DN, Das KK, Sarkar RK (2017) Role of starch hydrolytic enzymes and phosphatases in relation to under water seedling establishment in rice. Indian J Plant Physiol 22:279–286

    Article  CAS  Google Scholar 

  • Parija P (1943) On the seed treatment and phasic development. Curr Sci 12:88–89

    Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123. https://doi.org/10.3389/fpls.2016.01123

    Article  PubMed  PubMed Central  Google Scholar 

  • Pouramir-Dashtmian F, Khajeh-Hosseini M, Esfahani M (2014) Improving chilling tolerance of rice seedling by seed priming with salicylic acid. Arch Agron Crop Sci 60:1291–1302

    Article  CAS  Google Scholar 

  • Radanielson AM, Gaydon DS, Li T, Angeles O, Roth CH (2018) Modeling salinity effect on rice growth and grain yield with ORYZA v3 and APSIM-Oryza. Eur J Agron 100:44–55. https://doi.org/10.1016/j.eja.2018.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol 331:796–805

    Article  PubMed  Google Scholar 

  • Rang ZW, Jagadish SVK, Zhou QM, Craufurd PQ, Heuer S (2011) Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environ Exp Bot 70:58–65

    Article  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2012) Seed biopriming with salinity tolerant isolates of Trichoderma harzianum alleviates salt stress in rice: growth, physiological and biochemical characteristics. J Plant Pathol 94:353–365

    Google Scholar 

  • Ray S, Vijayan J, Sarkar RK (2016) Germination stage oxygen deficiency (GSOD): an emerging stress in the era of changing trends in climate and rice cultivation practice. Front Plant Sci 7:671. https://doi.org/10.3389/fpls.2016.00671

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy JN, Sarkar RK, Patnaik SSC, Singh DP, Singh US, Ismail AM, Mackill DJ (2009) Improvement of rice germplasm for rainfed lowland of eastern India. SABRAO J Breed Genet 41(Special supplement). ISSN:102907073

    Google Scholar 

  • Rehman HU, Basra SMA, Farooq M (2011) Field appraisal of seed priming to improve the growth, yield, and quality of direct seeded rice. Turk J Agric 35:357–365

    Google Scholar 

  • Rehman HU, Kamran M, Basra SMA, Afzal I, Farooq M (2015) Influence of seed priming on performance and water productivity of direct seeded rice in alternating wetting and drying. Rice Sci 22:189–196

    Article  Google Scholar 

  • Roberts GH (1961) Dormancy in rice seeds 1. The distribution of dormancy period. J Exp Bot 12:315–329

    Google Scholar 

  • Rodriguez-Valentin R, Campos F, Battaglia M, SolĂłrzano RM, Rosales MA, Covarrubias AA (2014) Group 6 late embryogenesis abundant (LEA) proteins in monocotyledonous plants: genomic organization and transcript accumulation patterns in response to stress in Oryza sativa. Plant Mol Biol Rep 32:198–208

    Article  CAS  Google Scholar 

  • Rosa C, Bell RW, White PF (2000) Phosphorus seed coating and soaking for improving seedling growth of Oryza sativa (rice) cv. IR66. Seed Sci Technol 28:201–211

    Google Scholar 

  • Roy C, Guha I (2017) Economics of climate change in the Indian Sundarbans. Glob Bus Rev 18:493–508

    Article  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of Indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328

    Article  CAS  PubMed  Google Scholar 

  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278. https://doi.org/10.1038/srep14278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar RK (2012) Seed priming improves agronomic trait performance under flooding and non-flooding conditions in rice with QTL SUB1. Rice Sci 19:286–294

    Article  Google Scholar 

  • Sarkar RK, Das S (2003) Yield of rainfed lowland rice with medium water depth under anaerobic direct seeding and transplanting. Trop Sci 43:192–198

    Article  Google Scholar 

  • Sarkar RK, Bera SK, De RN (1999) Rice (Oryza sativa) cultivars for anaerobic seeding. Indian J Agric Sci 69:73–76

    Google Scholar 

  • Sarkar RK, Reddy JN, Sharma SG, Ismail AM (2006) Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr Sci 91:899–906

    CAS  Google Scholar 

  • Sarkar RK, Mahata KR, Singh DP (2013) Differential responses of antioxidant system and photosynthetic characteristics in four rice cultivars differing in sensitivity to sodium chloride stress. Acta Physiol Plant 35:2915–2926

    Article  CAS  Google Scholar 

  • Sarkar RK, Chakraborty K, Chattopadhyay K, Ray S, Panda D, Ismail AM (2018) Response of rice to individual and combined stresses of flooding and salinity. In: Hasanuzzaman M, Fujita M, Biswas JK, Nahar K (eds) Advances in rice research for abiotic stress tolerance. Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00013-7

    Chapter  Google Scholar 

  • Sasaki K, Kishitani S, Fumitaka Abe F, Sato T (2015) Promotion of seedling growth of seeds of rice (Oryza sativa L. cv. Hitomebore) by treatment with H2O2 before sowing. Plant Prod Sci 8:509–514

    Article  Google Scholar 

  • Seck PA, Diagne A, Mohanty S, Wopereis MC (2012) Crops that feed the world 7: Rice. Food Sec 4:7–24

    Article  Google Scholar 

  • Sheteiwy M, Shena H, Xua J, Guana Y, Songa W, Hu J (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    Article  CAS  Google Scholar 

  • Shinwari KI, Jan M, Shah G, Khattak SR, Urehman S, Daud MK, Naeem R, Jamil M (2015) Seed priming with salicylic acid induces tolerance against chromium (VI) toxicity in rice (Oryza sativa L.). Pak J Bot 47:161–170

    CAS  Google Scholar 

  • Shiratsuchi H, Ohdaira Y, Yamaguchi H, Fukuda A (2017) Breaking the dormancy of rice seeds with various dormancy levels using steam and high temperature treatments in a steam nursery cabinet. Plant Prod Sci 20:183–192

    Article  CAS  Google Scholar 

  • Singh DP, Sarkar RK (2014) Distinction and characterization of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Funct Plant Biol 41:727–736

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Gupta R, Pandey R (2016) Rice seed priming with picomolar rutin enhances rhizospheric Bacillus subtilis CIM colonization and plant growth. PLoS One 11:e0146013. https://doi.org/10.1371/journal.pone.0146013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sircar SM, Das TM, Lahiri AN (1955) Germination of rice embryo under water and its relation of growth to endosperm fractions. Nature 175:1046–1047

    Article  Google Scholar 

  • Slaton NA, Wilson JCE, Ntamatungiro S, Norman RJ, Boothe DL (2001) Evaluation of zinc seed treatments for rice. Agron J 93:152–157

    Article  CAS  Google Scholar 

  • Smith A, Snapp S, Chikowo R, Thorne P, Bekunda M, Glover J (2017) Measuring sustainable intensification in smallholder agroecosystems: a review. Glob Food Sec 12:127–138

    Article  Google Scholar 

  • Songlin R, Qingzhong X, Bao ZWX (2002) Effects of chitosan coating on seed germination and salt-tolerance of seedling in hybrid rice (Oryza sativa L.). Eur PMC 28:803–808

    Google Scholar 

  • Steinbrecher T, Leubner-Metzger G (2018) Tissue and cellular mechanics of seeds. Curr Opin Genet Dev 51:1–10

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Kato T, Tsunagawa M, Sasaki N, Kitahara Y (1976) Mechanisms of dormancy in rice seeds. II. New growth inhibitors, momilactone –A and –B isolated from the hulls of rice seeds. Jpn J Breed 26:91–9198

    Article  CAS  Google Scholar 

  • Tavares LC, Rufino CDA, Dörr CS, Barros ACSA, Peske ST (2012) Performance of lowland rice seeds coated with dolomitic limestone and aluminum silicate. Revista Brasileira de Sementes 34:202–211

    Article  Google Scholar 

  • Thobunluepop P, Pawelzik E, Vearasilp S (2008) The perspective effects of various seed coating substances on rice seed variety Khao DAWK Mali 105 storability I: the case study of physiological properties. Pak J Biol Sci 11:2291–2299

    Article  CAS  PubMed  Google Scholar 

  • Tilebeni HG, Yousefpour H, Farhadi R, Golpayegani A (2012) Germination behavior of rice (Oriza Sativa L.) cultivars seeds to difference temperatures. Adv Environ Biol 6:573–577

    Google Scholar 

  • Tonel FR, Marini P, Bandeira JDM, Silva ACSD, Sampaio NV, Villela FA (2013) Osmotic priming of rice seeds subjected to low temperatures. J Seed Sci 35:231–235

    Article  Google Scholar 

  • Toole EH, Hendricks SB, Borthwick HA, TOOLE VK (1956) Physiology of seed germination. Annu Rev Plant Physiol 7:299–324

    Article  CAS  Google Scholar 

  • Uneo K, Miyoshi K (2005) Difference of optimum germination temperature of seeds of intact and dehusked japonica rice during seed development. Euphytica 143:271–275

    Article  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Vijayan J, Senapati S, Ray S, Chakraborty K, Molla KA, Basak N, Pradhan B, Yeasmin L, Chattopadhyay K, Sarkar RK (2018) Transcriptomic and physiological studies identify cues for germination stage oxygen deficiency tolerance in rice. Environ Exp Bot 147:234–248

    Article  CAS  Google Scholar 

  • Waheed A, Ahmad H, Abbasi FM (2012) Different treatment of rice seed dormancy breaking, germination of both wild species and cultivated varieties (Oryza sativa L.). J. Mater Environ Sci 3:551–560

    Google Scholar 

  • Wang A, Wang X, Ren Y, Gong X, Bewley JD (2005) Endo-β-mannanase and β-mannosidase activities in rice grains during and following germination, and the influence of gibberellin and abscisic acid. Seed Sci Res 15:219–227

    Article  CAS  Google Scholar 

  • Wang W, Chen Q, Hussain S, Mei J, Dong H, Peng S, Huang J, Cui K, Nie L (2016) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6:19637. https://doi.org/10.1038/srep19637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, He A, Peng S, Huang J, Cui K, Nie L (2018) The effect of storage condition and duration on the deterioration of primed rice seeds. Front Plant Sci 9:172. https://doi.org/10.3389/fpls.2018.00172

    Article  PubMed  PubMed Central  Google Scholar 

  • Welbaum GE, Bradford KJ, Yim K-O, Booth DT, Oluoch MO (1998) Biophysical, physiological and biochemical processes regulating seed germination. Seed Sci Res 8:161–172

    Article  CAS  Google Scholar 

  • Yamada N (1952) Calcium peroxide as an oxygen supplier for crop plants. (in Japanese, with English summary). Proc Crop Sci Soc Jpn 21:65–66

    Article  Google Scholar 

  • Yamauchi M (2017) A review of iron-coating technology to stabilize rice direct seeding onto puddled soil. Agron J 109:739–750

    Article  CAS  Google Scholar 

  • Yoshida S (1973) Effects of temperature on growth of the rice plant (Oryza sativa L.) in a controlled environment. Soil Sci Plant Nutr 19:299–310

    Article  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. IRRI, Manila

    Google Scholar 

  • Yu J, Lai Y, Wu X, Wu G, Guo C (2016) Overexpression of OsEm1 encoding a group I. LEA protein confers enhanced drought tolerance in rice. Biochem Biophys Res Comm 478:703–709

    Article  CAS  PubMed  Google Scholar 

  • Zeigler RS, Barclay A (2008) The relevance of rice. Rice 1:3–10

    Article  Google Scholar 

  • Zeng D, Shi Y (2008) Preparation and application of a novel environmentally friendly organic seed coating for rice. Am Euras J Agron 1:19–25

    Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Cui K, Nie L (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178

    Article  CAS  Google Scholar 

  • Zhu G, Ye N, Zhang J (2009) Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol 50:644–651

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Farooq M, Kobayashi N, Wahid A, Ito O, Basra SMA (2009) Strategies for producing more rice with less water. Adv Agron 101:351–388

    Article  Google Scholar 

  • Hussain S, Zheng M, Khan F, Khaliq A, Fahad S, Peng S, Huang J, Cui K, Nie L (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5:8101. https://doi.org/10.1038/srep08101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    Article  CAS  PubMed  Google Scholar 

  • Paul S, Roychoudhury A (2017) Effect of seed priming with spermine/spermidine on transcriptional regulation of stress-responsive genes in salt-stressed seedlings of an aromatic rice cultivar. Plant Gene 11:133–142

    Article  CAS  Google Scholar 

  • Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Molecular processes induced in primed seeds – increasing the potential to stabilize crop yields under drought conditions. J Plant Physiol 203:116–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are grateful to the Indian Council of Agriculture, India, for providing financial support through Emeritus Scientist Scheme to RKS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, R.K., Mukherjee, A.K., Chakraborty, K. (2019). Seed Priming Alleviates Stress Tolerance in Rice (Oryza sativa L.). In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_9

Download citation

Publish with us

Policies and ethics