Skip to main content

Improving Antioxidant Defense in Plants Through Seed Priming and Seedling Pretreatment

  • Chapter
  • First Online:
Priming and Pretreatment of Seeds and Seedlings

Abstract

Under abiotic and biotic stress conditions, the first and foremost effect on crop is reduction/poor seed germination, which results in poor crop stand and ultimately results in poor crop production. Seed priming proved to be a promising approach to alter the seed hydration and nutrition level for better germination, improved and synchronized crop stand, and better crop yield in normal and stress conditions as well. Abiotic and biotic stress rejuvenates the oxidative stress in different plant cellular compartments due to production of reactive oxygen species (ROS) as by-product of plant metabolic processes. To overcome the damaging effects of ROS, plants naturally develop antioxidant defense system within the plant body through production of enzymatic and nonenzymatic antioxidants to regulate oxidant and antioxidant balance in plants. Different types of seed priming techniques like hydropriming, nutrient priming, thermopriming, osmo-priming, etc. help protect the plants from oxidative stress by production of antioxidants for ROS scavenging to control lipid, DNA, and protein oxidation within the plant body. Seed priming found to be an operative approach to improve antioxidant defense system in the plant body and had promotive advantages to advance seed germination, plant vigor, and crop stand and overcome nutrient deficiency and minimize the negative impacts of stress conditions. In this chapter, we have reviewed promotive effects of seed priming and seedling pretreatment to improve antioxidant defense system in the plant body under stress conditions and role of seed priming in reducing the ROS production and ROS scavenging to maintain oxidants and antioxidant balance in plant’s cellular compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulrahmani B, Ghassemi-Golezani K, Valizadeh M, FeiziAsl V (2007) Seed priming and seedling establishment of barley (Hordeum vulgare L.). J Food Agric Environ 5(3&4):179–184

    Google Scholar 

  • Afzal I, Basra SMA, Shahid M, Saleem M (2008) Priming enhances germination of spring maize in cool conditions. Seed Sci Technol 36:497–503

    Article  Google Scholar 

  • Afzal I, Basra SMA, Ahmad N, Cheema MA, Haq MA, Kazmi MH, Irfan S (2011) Enhancement of antioxidant defense system induced by hormonal priming in wheat. Cereal Res Commun 39(3):334–342. https://doi.org/10.1556/CRC.39.2011.3.3

    Article  CAS  Google Scholar 

  • Ahmad I, Basra SMA, Hussain S, Hussain SA, Hafeez-ur-Rehman, Rehman A, Ali A (2015) Priming with ascorbic acid, salicylic acid and hydrogen peroxide improves seedling growth of spring maize at suboptimal temperature. J Environ Agric Sci Sarghoda 3:14–22

    Google Scholar 

  • Alcântara BK, Machemer-Noonan K, Silva-Júnior FG, Azevedo RA (2015) Dry priming of maize seeds reduces aluminum stress. PLoS One 10(12):e0145742. https://doi.org/10.1371/journal.pone.0145742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang L, Khan I (2015) Cadmium toxicity in maize (Zeamays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22:17022–17030. https://doi.org/10.1007/s11356-015-4882-z

    Article  CAS  Google Scholar 

  • Asgedom H, Becker M (2001) Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In: Proceedings of Deutscher Tropentag 2001, University of Bonn and ATSAF, Margraf Publishers Press, Weickersheim, p 282

    Google Scholar 

  • Ashraf M, Foolad MR (2005) Pre-sowing seed treatment – a shotgun approach to improve germination, plant growth and crop yield under saline and non-saline conditions. Adv Agron 88:223–271

    Article  Google Scholar 

  • Balouchi H, Dehkordi SA, Dehnavi MM, Behzadi B (2015) Effect of priming types on germination of Nigella sative under osmotic stress. South Western J Hortic Biol Environ 6(1):1–20

    Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HMW, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy. Springer, New York

    Book  Google Scholar 

  • Chen W, Guo C, Hussain S, Zhu B, Deng F, Xue Y (2015) Role of xylo-oligosaccharides in protection against salinity-induced adversities in Chinese cabbage. Environ Sci Pollut Res 23:1254–1264. https://doi.org/10.1007/s11356-015-5361-2

    Article  CAS  Google Scholar 

  • Ella ES, Dionisio-Sese ML, Ismail AM (2011) Seed pre-treatment in rice reduces damage, enhances carbohydrate mobilization and improves emergence and seedling establishment under flooded conditions, AoB Plants (Open Access Research Article). Oxford University Press, Oxford. https://doi.org/10.1093/aobpla/plr007

    Book  Google Scholar 

  • Farooq M, Basra SMA, Hafeez K (2006) Seed invigoration by osmo-hardening in coarse and fine rice. Seed Sci Technol 34:181–187. https://doi.org/10.15258/sst.2006.34.1.19

    Article  Google Scholar 

  • Ghassemi-Golezani K, Hosseinzadeh-Mahootchi A (2015) Improving physiological performance of safflower under salt stress by application of salicylic acid and jasmonic acid. Walia J 31:104–109

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants (Review). Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Golenberg EM, West NW (2013) Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. Am J Bot 100:1022–1037

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Sharma SK (2006) Plants as natural antioxidants. Nat Prod Radiance 5(4):326–334

    Google Scholar 

  • He L, Gao Z, Li R (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr J Biotechnol 8(22):6151–6157

    Article  CAS  Google Scholar 

  • Hoseini M, Feqenabi F, Tajbakhsh M, Babazadeh-Igdir H (2013) Introduction of seed treatment techniques (seed priming). Int J Biosci 3(5):1–12

    Article  Google Scholar 

  • Hussain S, Zheng M, Khan F, Khaliq A, Fahad S, Peng S (2015) Benefits of rice seed priming are offset permanently by prolonged storage and the storage conditions. Sci Rep 5:8101. https://doi.org/10.1038/srep08101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Cao W, Wu L, Geng M (2016a) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439. https://doi.org/10.3389/fpls.2016.00439

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016b) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116. https://doi.org/10.3389/fpls.2016.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396. https://doi.org/10.1007/s11738-012-1186-5

    Article  Google Scholar 

  • Kasote DM, Katyare SS, Hegde MV, Bae H (2015) Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 11(8):982–991. https://doi.org/10.7150/ijbs.12096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald MB (2000) Seed pre-treatments. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Murungu FS, Chiduza C, Nyamugafata P, Clark LJ, Whalley WR, Finch-Savage WE (2004) Effects of on-farm seed priming on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid Zimbabwe. Field Crop Res 89(1):49–57

    Article  Google Scholar 

  • Ozden E, Ermis S, Demir I (2017) Seed priming increases germination and seedling quality in Antirrhinum, Dahlia, Impatiens, Salvia and Zinnia seeds. J Ornamental Plants 7(3):171–176

    Google Scholar 

  • Paparella S, Arau’jo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293. https://doi.org/10.1007/s00299-015-1784-y

    Article  CAS  PubMed  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    Article  CAS  Google Scholar 

  • Peltonen-Sainio P, Kontturi M, Peltonen J (2006) Phosphorus seed coating enhancement on early growth and yield components in oat. Agron J 98:206–211

    Article  CAS  Google Scholar 

  • Pulok MAI, Roy TS, Sarker S, Islam MS, Rahima U (2014) Different types of priming effect on the seed germination, vigour and seedling parameters of cowpea. Bangladesh Res Publication J 10(2):209–213

    Google Scholar 

  • Samota MK, Sasi M, Singh A (2017) Impact of seed priming on proline content and antioxidant enzymes to mitigate drought stress in Rice genotype. Int J Curr Microbiol App Sci 6(5):2459–2466

    Article  CAS  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014. PMID: 16007271

    Article  CAS  PubMed  Google Scholar 

  • Tzortzakis NG (2009) Effect of pre-sowing treatment on seed germination and seedling vigour in endive and chicory. Hortic Sci (Prague) 36(3):117–125

    Article  CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290. https://doi.org/10.1007/s10725-010-9528-z

    Article  CAS  Google Scholar 

  • Yilmaz A, Ekiz H, Gultekin I, Torun B, Barut H, Karanlik S, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shakeel Ahmad or Muhammad Arif Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, I. et al. (2019). Improving Antioxidant Defense in Plants Through Seed Priming and Seedling Pretreatment. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_29

Download citation

Publish with us

Policies and ethics