Skip to main content

Advances in the Concept and Methods of Seed Priming

  • Chapter
  • First Online:

Abstract

The critical stages during the growth of crops are the uniform seed germination, early seedling growth, and uniform plant stand. Low crop yield is attributed to uneven seed germination and seedling growth. Therefore, the quality of seed can be improved through priming in addition to the field management techniques for better seed germination. Priming is a physiological technique of seed hydration and drying to enhance the pregerminative metabolic process for rapid germination, seedling growth, and final yield under normal as well as stressed conditions. The primed seeds show faster and uniform seed germination due to different enzyme activation, metabolic activities, biochemical process of cell repair, protein synthesis, and improvement of the antioxidant defense system as compared to unprimed seeds. There are many techniques of seed priming which are broadly divided into conventional methods (hydro-priming, osmo-priming, nutrient priming, chemical priming, bio-priming, and priming with plant growth regulators) and advanced methods (nano-priming and priming with physical agents). However, priming is strongly affected by various factors such as temperature, aeration, light, priming duration, and seed characteristics. This chapter highlights the priming mechanism and the available technologies as a tool for superficial seed germination and crop stand. An experiment with reference to the importance of priming toward vigor seed germination and seedling growth was conducted, and its results have been added in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu-Muriefah SS (2017) Phytohormonal priming improves germination and antioxidant enzymes of soybean (Glycine max) seeds under lead (Pb) stress. Biosci Res 14(1):42–56

    Google Scholar 

  • Adhikari T, Kundu S, Rao AS (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). Int J Agric Food Sci Technol 4(8):809–816

    Google Scholar 

  • Afzal I, Rehman HU, Naveed M, Basra SMA (2016) Recent advances in seed enhancements. In New challenges in seed biology-basic and translational research driving seed technology. InTech, pp 47–74

    Google Scholar 

  • Ahmad I, Basra SMA, Akram M, Wasaya A, Ansar M, Hussain S, Iqbal A, Hussain SA (2017) Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions. Semina: Ciências Agrárias 38:47–56

    Google Scholar 

  • Ahmadvand G, Soleimani F, Saadatian B, Pouya M (2012) Effect of seed priming with potassium nitrate on germination and emergence traits of two soybean cultivars under salinity stress conditions. Am Eurasian J Agric Environ Sci 12:769–774

    CAS  Google Scholar 

  • Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167(5):630–636

    Article  Google Scholar 

  • Amos D (2017) Aerated compost tea (ACT) to improve soil biology and to act as a biofertiliser/biofungicide, pp 1–2. http://orgprints.org/31042/. Accessed 2 June 2017

  • Ansari O, Chogazardi H, Sharifzadeh F, Nazarli H (2012) Seed reserve utilization and seedling growth of treated seeds of mountain rye (Secale montanum) as affected by drought stress. Cercetari Agronomice in Moldova 45(2):43–48

    Article  Google Scholar 

  • Araujo SDS, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A (2016) Physical methods for seed invigoration: advantages and challenges in seed technology. Front Plant Sci 7:646

    Article  PubMed Central  Google Scholar 

  • Arif M, Waqas M, Nawab K, Shahid M (2007) Effect of seed priming in Zn solutions on chickpea and wheat. Afr. Crop Sci Conf Proc 8:237–240

    Google Scholar 

  • Arif M, Jan MT, Marwat KB, Khan MA (2008) Seed priming improves emergence and yield of soybean. Pak J BotPak J Bot 40(3):1169–1177

    Google Scholar 

  • Asgedom H, Becker M (2001) Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In: Proceedings of Deutscher Tropentag. University of Bonn & ATSAF, Margraf Pub. Press, Weickersheim, p 282

    Google Scholar 

  • Assefa MK, Hunje R, Koti RV (2010) Enhancement of seed quality in soybean following priming treatment. Karnataka J Agric Sci 23:787–789

    Google Scholar 

  • Awan IU, Baloch MS, Sadozai NS, Sulemani MZ (1999) Stimulatory effect of GA3 and IAA on ripening process, kernel development and quality of rice. Pakistan J Biol Sci(Pakistan) 2:410–412

    Article  Google Scholar 

  • Bagheri MZ (2014) The effect of maize priming on germination characteristics, catalase and peroxidase enzyme activity and total protein content under salt stress. Int J Biosci 4(2):104–112

    Google Scholar 

  • Bahrani A, Pourreza J (2012) Gibberellic acid and salicylic acid effects on seed germination and seedlings growth of wheat (Triticum aestivum L.) under salt stress condition. World Appl Sci J 18(5):633–641

    CAS  Google Scholar 

  • Basra SMA, Farooq M, Tabassam R, Ahmad N (2005) Physiological and biochemical aspects of pre-sowing seed treatments in fine rice (Oryza sativa L.). Seed Sci Technol 33(3):623–628

    Article  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  PubMed  CAS  Google Scholar 

  • Benavides-Mendoza A, Ramirez-Rodriguez H, Robledo-Torres V, Hernandez-Davila J, Ramirez-Mezquitic JG, Bacopulos-Te-llez E, Bustamante-Garcia MA (2002) Seed treatment with salicylates modifies stomatal distribution, stomatal density and the tolerance to cold stress in pepper seedlings. In: Proceedings of the 16th international pepper conference (Tampico, Tamaulipas, Mexico (Vol. 2), November

    Google Scholar 

  • Bennett AJ, Whipps JM (2008) Dual application of beneficial microorganisms to seed during drum priming. Appl Soil Ecol 38(1):83–89

    Article  Google Scholar 

  • Berrie AMM, Drennan DSH (1971) The effect of hydration-dehydration on seed germination. New Phytol 70(1):135–142

    Article  CAS  Google Scholar 

  • Bhardwaj J, Anand A, Nagarajan S (2012) Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiol Biochem 57:67–73

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick MK (2013) Seed priming and foliar nutrition towards enhancing Lathyrus productivity under rice-utera system. In: Proceedings of the Centenary Session, 100th Indian Science Congress, Section of Agriculture and Forestry Sciences, 3–7 Jan 2013, Kolkata, West Bengal, India, p 219

    Google Scholar 

  • Bhowmick M K, Biswas PK, Sen P, Bhattacharyya P (2010) Studies on seed priming, row spacing and foliar nutrition in chickpea under rainfed conditions in West Bengal, India. In: Proceedings of the international seminar on climate change and environmental challenges of 21st century, December, pp 7–9

    Google Scholar 

  • Bilalis DJ, Katsenios N, Efthimiadou A, Karkanis A, Efthimiadis P (2012) Investigation of pulsed electromagnetic field as a novel organic pre-sowing method on germination and initial growth stages of cotton. Electromagn Biol Med 31(2):143–150

    Article  PubMed  Google Scholar 

  • Bradford KJ (1986) Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. HortScience (USA)

    Google Scholar 

  • Bradford KJ (1995) Water relations in seed germination. Seed Dev Germination 1(13):351–396

    Google Scholar 

  • Brinton W, Storms P, Evans E, Hill J (2004) Compost teas: microbial hygiene and quality in relation to method of preparation. Biodynamics. 249:36–45

    Google Scholar 

  • Bujalski W, Nienow AW (1991) Large-scale osmotic priming of onion seeds: a comparison of different strategies for oxygenation. Sci Hortic 46(1–2):13–24

    Article  Google Scholar 

  • Bujalski W, Nienow AW, Gray D (1989) Establishing the large scale osmotic priming of onion seeds by using enriched air. Ann Appl Biol 115(1):171–176

    Article  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168(4):521–530

    Article  CAS  Google Scholar 

  • Callan NW, Mathre D, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum pre-emergence damping-off in sh-2 sweet corn. Plant Dis 74:368–372

    Article  Google Scholar 

  • Cantliffe DJ (1987) Priming of lettuce for early and uniform emergence under conditions of environmental stress. Acta Hortic 122:29–38

    Google Scholar 

  • Cantliffe DJ (2003) Seed enhancements. Acta Hortic 607:53–59

    Article  Google Scholar 

  • Capron I, Corbineau F, Dacher F, Job C, Côme D, Job D (2000) Sugar beet seed priming: effects of priming conditions on germination, solubilization of 11-S globulin and accumulation of LEA proteins. Seed Sci Res 10(3):243–254

    Article  CAS  Google Scholar 

  • Chakraborthy GS, Aeri V, Verma P, Singh S (2014) Phytochemical and antimicrobial studies of Chlorophytum borivilianum. Pharmacophore 5:258–261

    Google Scholar 

  • Chen K, Fessehaie A, Arora R (2012) Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinaciaoleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci 183:27–36

    Article  CAS  PubMed  Google Scholar 

  • Côme D, Thévenot C (1982) Environmental control of embryo dormancy and germination. In: The physiology and biochemistry of seed development, dormancy and germination, pp 271–298

    Google Scholar 

  • Corbineau F, Côme D (2006) Priming: a technique for improving seed quality. Seed testing international. ISTA News Bulletin No 132:38–40

    Google Scholar 

  • Darwin C (1855) Effect of salt-water on the germination of seeds. Gardeners Chron Agric Gaz 47:773

    Google Scholar 

  • Dawood MG (2018) Stimulating plant tolerance against abiotic stress through seed priming. In: Advances in seed priming. Springer, Singapore, pp 147–183

    Chapter  Google Scholar 

  • Dawood MG, El-Awadi ME, El-Rokiek KG (2012) Physiological impact of fenugreek, guava and lantana on the growth and some chemical parameters of sunflower plants and associated weeds. J Ame Sci 8(6):166–174

    Google Scholar 

  • Demir I, Ozuaydın I, Yasar F, Van Staden J (2012) Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. S Afr J Bot 78:83–87

    Article  CAS  Google Scholar 

  • Dey S, Pramanik K, Mukherjee S, Poddar S, Barik K (2014) Effect of seed priming and straw mulching on growth and productivity of chickpea (Cicer arietinum L.) under rainfed condition. SATSA Mukhaptra Annu Tech Issue 18:126–131

    Google Scholar 

  • Di Girolamo G, Barbanti L (2012) Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital J Agron 7(2):25

    Article  Google Scholar 

  • Diver S (2002) Notes on compost teas: a supplement to the ATTRA publication: compost teas for plant disease control. Appropriate Technology Transfer for Rural Areas (ATTRA), National Sustainable Agriculture Information Service, AR. (National Center for Appropriate Technology, Montana). Retrieved March, 5, 2012

    Google Scholar 

  • Dubrovsky JG (1996) Seed hydration memory in Sonoran Desert cacti and its ecological implication. Am J Bot 83(5):624–632

    Article  Google Scholar 

  • Dutta P (2018) Seed priming: new vistas and contemporary perspectives. In: Advances in seed priming. Springer, Singapore, pp 3–22

    Chapter  Google Scholar 

  • Ells JE (1963) The influence of treating tomato seed with nutrient solutions on emergence rate and seedling growth. In Proc Amer Soc Hort Sci 83:684–687

    CAS  Google Scholar 

  • Evenari M (1984) Seed physiology: its history from antiquity to the beginning of the 20th century. Bot Rev 50(2):119–142

    Article  Google Scholar 

  • Farahbakhsh H (2012) Germination and seedling growth in un-primed and primed seeds of Fenel as affected by reduced water potential induced by NaCl. Int Res J Appl Basic Sci 3(4):737–744

    CAS  Google Scholar 

  • Farooq M, Basra SM, Rehman H, Mehmood T (2006) Germination and early seedling growth as affected by pre-sowing ethanol seed treatments in fine rice. Int J Agric BiolInt J Agric Biol 8:19–22

    Google Scholar 

  • Farooq M, Basra SMA, Rehman H, Saleem BA (2008) Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J Agron Crop Sci 194(1):55–60

    Article  Google Scholar 

  • Farooq M, Wahid A, Lee DJ (2009) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31(5):937–945

    Article  CAS  Google Scholar 

  • Farooq M, Basra SM, Wahid A, Ahmad N (2010) Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: consequences for seedling emergence and growth. Agric Sci China 9(2):191–198

    Article  CAS  Google Scholar 

  • Fedoroff NV, Battisti DS, Beachy RN, Cooper PJ, Fischhoff DA, Hodges CN et al (2010) Radically rethinking agriculture for the 21st century. Science 327(5967):833–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finch-Savage WE, Gray D, Dickson GM (1991) The combined effects of osmotic priming with plant growth regulator and fungicide soaks on the seed quality of five bedding plant species. Seed Sci Technol 19(2):495–503

    Google Scholar 

  • Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C (2016) Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 4:20

    Article  Google Scholar 

  • Gaius PS (1949) Naturalishistoria, vol. IV–VII, Books 12–27 (trans: Rackham H, Jones WHS, Eichholz DE). Harvard University Press, Massachussets and William Heinemann, London

    Google Scholar 

  • Ghafari H, Razmjoo J (2013) Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. Int JAgron Plant Prod 4(11):2997–3003

    Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10(6):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halmer P (2004) Methods to improve seed performance in the field. In: Handbook of seed physiology, pp 125–65

    Google Scholar 

  • Harris D (2006) Development and testing of “on-farm” seed priming. Adv Agron 90:129–178

    Article  Google Scholar 

  • Harris D, Rashid A, Miraj G, Arif M, Yunas M (2008) ‘On-farm’seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil 306(1–2):3–10

    Article  CAS  Google Scholar 

  • Heydecker W, Coolbear P (1977) Seed treatments for improved performance-survey and attempted prognosis. Seed Sci Technol 5:353–425

    CAS  Google Scholar 

  • Heydecker W, Gibbins BM (1977) The‘priming’of seeds. In: Symposium on seed problems in horticulture, vol 83, pp 213–224

    Google Scholar 

  • Heydecker W, Higgins J, Gulliver RL (1973) Accelerated germination by osmotic seed treatment. Nature 246(5427):42

    Article  CAS  Google Scholar 

  • Hill H, Bradford KJ, Cunningham J, Taylor AG (2008) Primed lettuce seeds exhibit increased sensitivity to moisture during aging. Acta Hortic 782:135–141

    Article  Google Scholar 

  • Ilyas S (2006) Seed treatments using matriconditioning to improve vegetable seed quality. J Agronomi Indonesia 34(2)

    Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. Topaclobutrazol treatment under salinity. Acta Physiol Plant 29(3):205–209

    Article  CAS  Google Scholar 

  • Jett LW, Welbaum GE, Morse RD (1996) Effects of matric and osmotic priming treatments on broccoli seed germination. J Am Soc Hortic Sci 121(3):423–429

    Article  Google Scholar 

  • Jisha KC, Vijayakumari K, Puthur JT (2013) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35(5):1381–1396

    Article  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2002) Effect of osmo-and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regul 37(1):17–22

    Article  CAS  Google Scholar 

  • Kester ST, Geneve RL, Houtz RL (1997) Priming and accelerated ageing affect L-isoaspartyl methyltransferase activity in tomato (Lycopersicon esculentum Mill.) seed. J Exp Bot 48(4):943–949

    Article  CAS  Google Scholar 

  • Khaliq A, Aslam F, Matloob A, Hussain S, Geng M, Wahid A, ur Rehman H (2015) Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of rice. Biol Trace Elem Res 166(2):236–244

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Khalil SK, Khan AZ, Marwat KB, Afzal A (2008) The role of seed priming in semi-arid area for mung bean phenology and yield. Pak J Bot 40(6):2471–2480

    Google Scholar 

  • Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf-Bouteau H (2011) Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci 181(3):309–315

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Shim CK, Kim YK, Hong SJ, Park JH, Han EJ, Kim JH, Kim SC (2015) Effect of aerated compost tea on the growth promotion of lettuce, soybean, and sweet corn in organic cultivation. Plant Pathol J 31(3):259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koehler DE (1967) Thesis. Purdue University, USA

    Google Scholar 

  • Korkmaz A, Korkmaz Y (2009) Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress. Sci Hortic 119(2):98–102

    Article  CAS  Google Scholar 

  • Kumar S, Arya MC, Sinfh R (2010) Management of sweet pepper diseases and growth promotion by Pseudomonas fluorescens and Trichoderma harzianum in mid hills of Central Himalayas, India. Indian Phytopathol 63(2):181–186

    Google Scholar 

  • Lara TS, Lira JMS, Rodrigues AC, Rakocevic M, Alvarenga AA (2014) Potassium nitrate priming affects the activity of nitrate reductase and antioxidant enzymes in tomato germination. J Agric Sci 6(2):72

    Google Scholar 

  • MacDonald H (1997) Auxin perception and signal transduction. Physiol Plant 100:423–430

    Article  CAS  Google Scholar 

  • Mahajan G, Sarlach RS, Japinder S, Gill MS (2011) Seed priming effects on germination, growth and yield of dry direct-seeded rice. J Crop Improv 25(4):409–417

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego. Mineral nutrition of high plant. Academic Press, pp: 330–355

    Google Scholar 

  • Mavi K (2014) Use of extract from dry marigold (Tagatesspp.) flowers to prime eggplant (Solanum melongenaL.) seeds. Acta Sci Pol-Hortorumcultus 13:3–12

    Google Scholar 

  • Mavi K (2016) The effect of organic priming with Marigold herbal tea on seeds quality in Aji pepper (Capsicum baccatum var. pendulum Willd.). Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi 21(1):31–39

    Google Scholar 

  • May LH, Milthorpe EJ, Milthorpe FL (1962) Pre-sowing hardening of plants to drought. In: Field crop abstracts, vol 15, pp 93–98

    Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley JD (eds) Seed technology and its biological basis. Sheffield Academic Press, Sheffield, pp 287–325

    Google Scholar 

  • Mengesha WK, Powell SM, Evans KJ, Barry KM (2017) Diverse microbial communities in non-aerated compost teas suppress bacterial wilt. World J Microbiol Biotechnol 33(3):49–55

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    Article  CAS  Google Scholar 

  • Mirshekari B, Baser S, Allahyari S, Hamedanlu N (2012) On-farm seed priming with Zn+ Mn is an effective way to improve germination and yield of marigold. Afr J Microbiol Res 6(28):5796–5800

    CAS  Google Scholar 

  • Mohd Din ARJ, Cheng KK, Sarmidi MR (2017) Assessment of compost extract on yield and phytochemical contents of Pak Choi (Brassica Rapa cv. Chinensis) grown under different fertilizer strategies. Commun Soil Sci Plant Anal 48(3):274–284

    Article  CAS  Google Scholar 

  • Moradi A, Younesi O (2009) Effects of osmo-and hydro-priming on seed parameters of grain sorghum (Sorghum bicolor L.). Aust J Basic Appl Sci 3(3):1696–1700

    CAS  Google Scholar 

  • Naeem M, Bhatti IRAM, Ahmad RH, Ashraf MY (2004) Effect of some growth hormones (GA3, IAA and kinetin) on the morphology and early or delayed initiation of bud of lentil (Lens culinaris Medik). Pak J Bot 36(4):801–809

    Google Scholar 

  • Narwal SS (1994) Allelopathy in crop production. Scientific Publishers, Jodhpur, p 288

    Google Scholar 

  • Nayban G, Mandal AK, De BK (2017) Seed priming: a low-cost climate-resilient tool for improving germination, growth and productivity of mungbean. SATSA Mukhaptra Annu Tech Issue 21:162–172

    Google Scholar 

  • Niinemets Ü (2009) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15(3):145–153

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan JOHN, Bouw WJ (1984) Pepper seed treatment for low-temperature germination. Can J Plant Sci 64(2):387–393

    Article  Google Scholar 

  • Ozbay N, Susluoglu Z (2016) Assessment of growth regulator prohexadione calcium as priming agent for germination enhancement of pepper at low temperature. JAPS: J Anim Plant Sci 26(6):1652–1658

    CAS  Google Scholar 

  • Pame AR, Kreye C, Johnson D, Heuer S, Becker M (2015) Effects of genotype, seed P concentration and seed priming on seedling vigor of rice. Exp Agric 51(03):370–381

    Article  Google Scholar 

  • Passam HC, Karavites PI, Papandreou AA, Thanos CA, Georghiou K (1989) Osmo-conditioning of seeds in relation to growth and fruit yield of aubergine, pepper, cucumber and melon in unheated greenhouse cultivation. Sci Hortic 38(3–4):207–216

    Article  Google Scholar 

  • Patanè C, Cavallaro V, D’Agosta G, Cosentino SL (2008) Plant emergence of PEG-osmoprimed seeds under suboptimal temperatures in two cultivars of sweet sorghum differing in seed tannin content. J Agron Crop Sci 194(4):304–309

    Article  Google Scholar 

  • Pereira MD, Dias DCFDS, Dias LADS, Araújo EF (2009) Primed carrot seeds performance under water and temperature stress. Sci Agric 66(2):174–179

    Article  Google Scholar 

  • Pill WG (1995) Low water potential and presowing germination treatments to improve seed quality. In: Seed quality, pp 319–359

    Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10(4):393–398

    Article  CAS  PubMed  Google Scholar 

  • Prabha D, Negi S, Kumari P, Negi YK, Chauhan JS (2016) Effect of seed priming with some plant leaf extract on seedling growth characteristics and root rot disease in tomato. Int J Agric Syst 4(1):46–51

    Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR et al (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Qi W, Zhang L, Wang L, Xu H, Jin Q, Jiao Z (2015) Pretreatment with low-dose gamma irradiation enhances tolerance to the stress of cadmium and lead in Arabidopsis thaliana seedlings. Ecotoxicol Environ Saf 115:243–249

    Article  CAS  PubMed  Google Scholar 

  • Raj SN, Shetty NP, Shetty HS (2004) Seed bio-priming with Pseudomonas fluorescens isolates enhances growth of pearl millet plants and induces resistance against downy mildew. Int J Pest Manag 50(1):41–48

    Article  Google Scholar 

  • Rakshit A, Pal S, Rai S, Rai A, Bhowmick MK, Singh HB (2013) Micronutrient seed priming: a potential tool in integrated nutrient management. SATSA Mukhaptra Annu Tech Issue 17:77–89

    Google Scholar 

  • Rakshit A, Sunita K, Pal S, Singh A, Singh HB (2015) Bio-priming mediated nutrient use efficiency of crop species. In: Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 181–191

    Chapter  Google Scholar 

  • Rangaswamy A, Purushothaman S, Devasenapathy P (1993) Seed hardening in relation to seedling quality characters of crops. Madras Agric J 80(9):535–537

    Google Scholar 

  • Raphael E (2012) Phytochemical constituents of some leaves extract of Aloe vera and Azadirachta indica plant species. Glob Adv Res J Environ Sci Toxicol 1(2):014–017

    Google Scholar 

  • Reddy PP (2012) Bio-priming of seeds. In: Recent advances in crop protection. Springer, New Delhi, pp 83–90

    Chapter  Google Scholar 

  • Reddy MVB, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seeds quality. J Agric Food Chem 47:67–72

    Article  Google Scholar 

  • Rehman H, Nawaz Q, Basra SMA, Afzal I, Yasmeen A (2014) Seed priming influence on early crop growth, phenological development and yield performance of linola (Linum usitatissimum L.). J Integr Agric 13(5):990–996

    Article  CAS  Google Scholar 

  • Renugadevi J, Vijayageetha V (2006) Organic seed fortification in cluster bean (Cyamopsistetra gonoloba L.) TAUB. In: International conference on indigenous vegetables and legumes. Prospectus for fighting poverty, hunger and malnutrition, vol 752, December, pp 335–337)

    Google Scholar 

  • Rowse HR (1991) Methods of priming seeds. UK Patent, 2(192), 781

    Google Scholar 

  • Ruan SL, Xue QZ (2002) Effects of chitosan coating on seed germination and salt-tolerance of seedlings in hybrid rice (Oryza sativa L.). Acta Agron Sin 28:803–808

    Google Scholar 

  • Sajedi NA, Ardakani MR, Madani H, Naderi A, Miransari M (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zea mays L.) under drought stress. Physiol Mol Biol Plants 17(3):215–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi M, Tamaskani F (2008) Pretreatment effect of nanosilver on germination and seedling growth of wheat under salt stress. In: Proceeding of 11th Iranian congress in seed sciences and echnology. Gorgan, Iran

    Google Scholar 

  • Satish S, Mohana DC, Ranhavendra MP, Raveesha KA (2007) Antifungal activity of some plant extracts against important seed borne pathogens of Aspergillus sp. Int J Agric Technol 3(1):109–119

    Google Scholar 

  • Scheuerell SJ, Mahaffee WF (2006) Variability associated with suppression of graymold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Dis 90:1201–1208

    Article  PubMed  Google Scholar 

  • Schwember AR, Bradford KJ (2005) Drying rates following priming affect temperature sensitivity of germination and longevity of lettuce seeds. Hort Sci 40(3):778–781

    Article  Google Scholar 

  • Shahrokhi M, Tehranifar A, Hadizadeh H, Selahvarzi Y (2011) Effect of drought stress and paclobutrazol-treated seeds on physiological response of Festuca arundinacea L. Master and Lolium perenne L. Barrage. J Biol Environ Sci 5(14):77–85

    Google Scholar 

  • Shao CX, Hu J, Song WJ, Hu WM (2005) Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling. J Zhejiang Univ (Agric Life Sci) 31(6):705–708

    CAS  Google Scholar 

  • Shivay YS, Singh U, Prasad R, Kaur R (2016) Agronomic interventions for micronutrient biofortification of pulses. Indian J Agron 61(4th IAC Special Issue):161–172

    Google Scholar 

  • Singh MV (2007) Efficiency of seed treatment for ameliorating zinc deficiency in crops. Zinc Crops 24–26

    Google Scholar 

  • Singh A, Dahiru R, Musa M, Sani Haliru B (2014) Effect of Osmopriming duration on germination, emergence, and early growth of Cowpea (Vigna unguiculata (L.) Walp.) in the Sudan Savanna of Nigeria. Int J Agron 2014:1–4

    Google Scholar 

  • Singh H, Jassal RK, Kang JS, Sandhu SS, Kang H, Grewal K (2015a) Seed priming techniques in field crops-a review. Agric Rev 36(4):251–264

    Google Scholar 

  • Singh U, Praharaj CS, Shivay YS, Kumar L, Singh SS (2015b) Ferti-fortification: an agronomic approach for micronutrient enrichment of pulses. In Pulses: challenges and opportunities under changing climatic scenario, In: Proceedings of the national conference on “Pulses: challenges and opportunities under changing climatic scenario, vol. 29, pp 208–222

    Google Scholar 

  • Slaton NA, Wilson CE, Ntamatungiro S, Norman RJ, Boothe DL (2001) Evaluation of zinc seed treatments for rice. Agron J 93(1):152–157

    Article  CAS  Google Scholar 

  • Sliwinska E, Jendrzejczak E (2002) Sugar-beet seed quality and DNA synthesis in the embryo in relation to hydration-dehydration cycles. Seed Sci Technol 30(3):597–608

    Google Scholar 

  • Srivastava AK, Bose B (2012) Effect of nitrate seed priming on phenology, growth rate and yield attributes in rice (Oryza sativa L.). Vegetos Int J Plant Res 25(2):174–181

    Google Scholar 

  • Steel RGD, Torrie JH, Dickey D (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw Hill Book Company, New York, pp 172–177

    Google Scholar 

  • Sung JM, Chiu KY (1995) Hydration effect on seedling emergence strength of watermelon seeds differing in ploidy. Plant Sci 110(1):21–26

    Article  CAS  Google Scholar 

  • Tavili A, Zare S, Enayati A (2009) Hydropriming, ascorbic and salicylic acid influence on germination of Agropyro nelongatum host. Seeds under salt stress. Res J Seed Sci 2(1):16–22

    Article  Google Scholar 

  • Taylor AG, Allen PS, Bennett MA, Bradford KJ, Burris JS, Misra MK (1998) Seed enhancements. Seed Sci Res 8(2):245–256

    Article  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67(3):429–443

    Article  CAS  Google Scholar 

  • Tonelli ML, Furlan A, Taurian T, Castro S, Fabra A (2011) Peanut priming induced by biocontrol agents. Physiol Mol Plant Pathol 75(3):100–105

    Article  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163(3):515–523

    Article  CAS  Google Scholar 

  • Umair A, Ali S, Hayat R, Ansar M, Tareen MJ (2011) Evaluation of seed priming in mung bean (Vigna radiata) for yield, nodulation and biological nitrogen fixation under rainfed conditions. Afr J Biotechnol 10(79):18122–18129

    CAS  Google Scholar 

  • Umair A, Ali S, Sarwar M, Bashir K, Tareen MJ, Malik MA (2013) Assessment of some priming techniques in mungbean (Vigna radiata): a green house study. Pak J Agric Res 26:4

    Google Scholar 

  • Upadhyaya H, Begum L, Dey B, Nath PK, Panda SK (2017) Impact of calcium phosphate nanoparticles on rice plant. J Plant Sci Phytopathol 1:1–10

    Article  Google Scholar 

  • Van Hulten M, Pelser M, Van Loon LC, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci 103(14):5602–5607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Varier A, Vari AK, Dadlani M (2010) The subcellular basis of seed priming. Curr Sci 99:450–456

    CAS  Google Scholar 

  • Wahid A, Noreen A, Basra SM, Gelani S, Farooq M (2008) Priming-induced metabolic changes in sunflower (Helianthus annuus) achenes improve germination and seedling growth. Bot Stud 49(4):343–350

    CAS  Google Scholar 

  • Waqas M, Nizami AS, Aburiazaiza AS, Barakat MA, Ismail IMI, Rashid MI (2017) Optimization of food waste compost with the use of biochar. J Environ Manag. https://doi.org/10.1016/j.jenvman.2017.06.015

    Article  CAS  PubMed  Google Scholar 

  • Warren JE, Bennett MA (1997) Seed hydration using the drum priming system. Hort Sci 32(7):1220–1221

    Article  Google Scholar 

  • Weltzien HC (1991) Biocontrol of foliar fungal disease with compost extracts. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp 430–450

    Chapter  Google Scholar 

  • Wright B, Rowse H, Whipps JM (2003) Microbial population dynamics on seeds during drum and steeping priming. Plant Soil 255(2):631–640

    Article  CAS  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63(3):279–290

    Article  CAS  Google Scholar 

  • Yadav PV, Kumari M, Ahmed Z (2011) Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Res J Seed Sci 4(3):125–136

    Article  Google Scholar 

  • Yan M (2015) Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. S Afr J Bot 99:88–92

    Article  CAS  Google Scholar 

  • Yogananda DK, Vyakarnahal BS, Shekhargouda M (2004) Effect of seed invigoration with growth regulations and micronutrients on germination and seedling vigour of bell pepper cv. California Wonder. Karnataka J Agri Sci 17(4):811–813

    Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65(1):27–34

    Article  CAS  Google Scholar 

  • Zhou J, Wang Y, Jahufer Z (2013) Location and chemical composition of semi-permeable layer of forage seeds. Bangladesh J Bot 42(1):23–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waqas, M. et al. (2019). Advances in the Concept and Methods of Seed Priming. In: Hasanuzzaman, M., Fotopoulos, V. (eds) Priming and Pretreatment of Seeds and Seedlings. Springer, Singapore. https://doi.org/10.1007/978-981-13-8625-1_2

Download citation

Publish with us

Policies and ethics