Skip to main content

Optimization of DC-DC Converters for Off-Grid Lighting in Trains Using Artificial Neural Networks

  • Conference paper
  • First Online:
  • 1208 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 989))

Abstract

The paper manifests the optimization of DC-DC converters for off-grid lighting in trains with Artificial Neural Networks using distinct soft computing techniques as Hopfield, recurrent networks, vector quantization, cascade forward and Elman backpropagation techniques. These techniques are user-friendly and give optimum results in less time with minimum errors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, Z., Thomsen, O.C., Andersen, M.A.E.: Dual-input soft-switched DC-DC converter with isolated current-fed half-bridge and voltage-fed full-bridge for fuel cell or photovoltaic systems. In: Applied Power Electronics Conference and Exposition (APEC), Twenty-Eighth Annual IEEE, pp. 2042–2047, 17–21 Mar 2013 (2013)

    Google Scholar 

  2. Ribeiro, E., Cardoso, A.J.M., Boccaletti, C.: Fault-tolerant strategy for a photovoltaic DC-DC converter. IEEE Trans. Power Electron. 28(6), 3008–3018 (2013)

    Article  Google Scholar 

  3. Chew, K.W.R., Zhuochao, S., Tang, H., Siek, L.: A 400 nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. In: 2013 IEEE International on Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 68, 69, 17–21 Feb 2013 (2013)

    Google Scholar 

  4. Scarpa, V.V.R., Araujo, S.V., Sahan, B., Zacharias, P.: Achieving higher power density in DC-DC converters for photovoltaic applications. In: Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011), pp. 1, 10, 30 Aug 2011–1 Sept 2011 (2011)

    Google Scholar 

  5. Gu, B., Dominic, J., Lai, J.-S., Ma, H.: Hybrid transformer ZVS/ZCS DC-DC converter for photovoltaic microinverters. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 16, 22, 17–21 Mar 2013 (2013)

    Google Scholar 

  6. Vekhande, V., Fernandes, B.G.: Module integrated DC-DC converter for integration of photovoltaic source with DC micro-grid. In: IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, pp. 5657, 5662, 25–28 Oct 2012

    Google Scholar 

  7. Dousoky, G.M., Ahmed, E.M., Shoyama, M.: Current-sensorless MPPT with DC-DC boost converter for photovoltaic battery chargers. In: 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1607, 1614, 15–20 Sept 2011

    Google Scholar 

  8. Purhonen, M., Hannonen, J., Strom, J., Silventoinen, P.: Step-up DC-DC converter passive component dimensioning in photovoltaic applications. In: 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI), pp. 1, 5, 14–17 Nov 2012 (2012)

    Google Scholar 

  9. Pecelj, I., De Haan, S.W.H., Ferreira, J.A.: A soft-switched, flying inductor DC-DC converter suitable for photovoltaic panels. In: 2012 7th International Power Electronics and Motion Control Conference (IPEMC), vol. 2, pp. 1241, 1246, 2–5 June 2012 (2012)

    Google Scholar 

  10. Zeng, J., Qiao, W., Qu, L.: A single-switch isolated DC-DC converter for photovoltaic systems. In: 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3446, 3452, 15–20 Sept 2012

    Google Scholar 

  11. Kryukov, K.V., Valiev, M.M.: Residential photovoltaic power conditioning system with module integrated DC-DC converters. In: 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), pp. DS3b.9-1, DS3b.9-4, 4–6 Sept 2012 (2012)

    Google Scholar 

  12. Bansal, S., Saini, L.M., Joshi, D.: Design of a DC-DC converter for photovoltaic solar system. In: 2012 IEEE 5th India International Conference on Power Electronics (IICPE), pp. 1, 5, 6–8 Dec 2012 (2012)

    Google Scholar 

  13. Bhatnagar, P., Nema, R.K.: Control techniques analysis of DC-DC converter for photovoltaic application using SIMSCAPE. In: 2012 IEEE 5th India International Conference on Power Electronics (IICPE), pp. 1, 6, 6–8 Dec 2012 (2012)

    Google Scholar 

  14. Masri, S., Mohamad, N., Hariri, M.H.M.: Design and development of DC-DC buck converter for photovoltaic application. In: 2012 International Conference on Power Engineering and Renewable Energy (ICPERE), pp. 1, 5, 3–5 July 2012

    Google Scholar 

  15. Evran, F., Aydemir, M.T.: A coupled-inductor Z-source based Dc-Dc converter with high step-up ratio suitable for photovoltaic applications. In: 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 647, 652, 25–28 June 2012

    Google Scholar 

  16. Poshtkouhi, S., Biswas, A., Trescases, O.: DC-DC converter for high granularity, sub-string MPPT in photovoltaic applications using a virtual-parallel connection. In: 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 86, 92, 5–9 Feb 2012 (2012)

    Google Scholar 

  17. Kim, K.A., Li, R.M., Krein, P.T.: Voltage-offset resistive control for DC-DC converters in photovoltaic applications. In: 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2045, 2052, 5–9 Feb 2012 (2012)

    Google Scholar 

  18. Das, M., Agarwal, V.: A novel, high efficiency, high gain, front end DC-DC converter for low input voltage solar photovoltaic applications. In: IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, pp. 5744, 5749, 25–28 Oct 2012

    Google Scholar 

  19. Gu, B., Dominic, J., Lai, J.-S., Zhao, Z., Liu, C.: High boost ratio hybrid transformer DC-DC converter for photovoltaic module applications. In: 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 598,606, 5–9 Feb 2012

    Google Scholar 

  20. Ilango, K., Ram, S., Nair, M.G.: A hybrid photovoltaic-battery powered DC-DC converter with high conversion ratio and reduced switch stress. In: 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1, 5, 16–19 Dec 2012 (2012)

    Google Scholar 

  21. Bilsalam, A., Boonyaroonate, I., Haema, J., Chunkag, V.: A study effect and improved maximum power point of photovoltaic cells with DC-DC converter. In: 2012 Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1, 4, 27–29 Mar 2012 (2012)

    Google Scholar 

  22. Poshtkouhi, S., Trescases, O.: Multi-input single-inductor dc-dc converter for MPPT in parallel-connected photovoltaic applications. In: 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 41, 47, 6–11 Mar 2011 (2011)

    Google Scholar 

  23. Chudjuarjeen, S., Jimenez, J.C., Jayasuriya, S., Nwankpa, C.O., Miu, K., Sangswang, A.: DC-DC boost converter with network model for photovoltaic system. In: 2011 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1273, 1278, 17–22 Sept 2011 (2011)

    Google Scholar 

  24. Suwannatrai, P., Liutanakul, P., Wipasuramonton, P.: Maximum power point tracking by incremental conductance method for photovoltaic systems with phase shifted full-bridge dc-dc converter. In: 2011 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 637, 640, 17–19 May 2011 (2011)

    Google Scholar 

  25. Hussein, A., Hirasawa, K., Hu, J., Murata, J.: The dynamic performance of photovoltaic supplied dc motor fed from DC-DC converter and controlled by neural networks. In: Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN ‘02, vol. 1, pp. 607, 612 (2002)

    Google Scholar 

  26. Di Piazza, M.C., Pucci, M., Ragusa, A., Vitale, G.: Analytical versus neural real-time simulation of a photovoltaic generator based on a DC-DC converter. In: Energy Conversion Congress and Exposition. ECCE 2009. IEEE, pp. 3350, 3356, 20–24 Sept 2009 (2009)

    Google Scholar 

  27. Jiteurtragool, N., Wannaboon, C., San-Um, W.: A power control system in DC-DC boost converter integrated with photovoltaic arrays using optimized back propagation artificial neural network. In: 2013 5th International Conference on Knowledge and Smart Technology (KST), pp. 107, 112, 31 Jan 31–1 Feb 2013 (2013)

    Google Scholar 

  28. Sulaiman, D.R., Amin, H.F., Said, I.K.: Design of high efficiency DC-DC converter for photovoltaic solar home applications. J. Energy 4(11) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monu Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malik, M., Dahiya, R. (2020). Optimization of DC-DC Converters for Off-Grid Lighting in Trains Using Artificial Neural Networks. In: Choudhury, S., Mishra, R., Mishra, R., Kumar, A. (eds) Intelligent Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol 989. Springer, Singapore. https://doi.org/10.1007/978-981-13-8618-3_36

Download citation

Publish with us

Policies and ethics