Skip to main content

Research Progress on Artificial Intelligence Human Sensor

  • Conference paper
  • First Online:
Proceedings of 2018 International Conference on Optoelectronics and Measurement

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 567))

  • 780 Accesses

Abstract

The artificial intelligence technology has achieved great progress recently and has potential in the applications of military, intelligent industry, transportation and logistics, intelligent security check, national security, biomedicine, intelligent agriculture, intelligent services, and so on. Human-like sensor and algorithm are two pillars of artificial intelligence technology, corresponding to the ‘senses’ and ‘brains’ of intelligent machines, respectively. Based on traditional sensor technology, the artificial intelligence human-like sensor combines the novel complementary metal oxide semiconductor (CMOS), micro-electro-mechanical systems (MEMS), nanotechnology, big data and cloud computing, Internet technology, and so on, leading to the great improvement of the sensors performance. In this paper, the artificial intelligence human perception is divided into five categories: vision, hearing, smell, taste, and touch, and corresponding research progress and application of the sensors were introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, B.S., Bae, M., Kim, S.H.: CMOS image sensor for extracting depth information using offset pixel aperture technique. In: Proceedings of SPIE 10376, Novel Optical Systems Design and Optimization XX, 103760Y (2017)

    Google Scholar 

  2. Li, F., Xin, L., Liu, Y.: High efficient optical remote sensing images acquisition for nano-satellite-framework. In: Proceedings of SPIE 10423, Sensors, Systems, and Next-Generation Satellites XXI, 104231Q (2017)

    Google Scholar 

  3. Guerrero, E., Aguirre, J., Sánchez-Azqueta, C.: Equalizing Si photodetectors fabricated in standard CMOS processes. In: Proceedings of SPIE 10249, Integrated Photonics: Materials, Devices, and Applications IV, 102490N (2017)

    Google Scholar 

  4. Seo, M.W., Shirakawa, Y., Kagawa, K.: A high performance multi-tap CMOS lock-in pixel image sensor for biomedical applications. In: Proceedings of SPIE 10076, High-Speed Biomedical Imaging and Spectroscopy: Toward Big Data Instrumentation and Management II, 100760V (2017)

    Google Scholar 

  5. Ma, J., Masoodian, S., Starkey, D.: Photon-number-resolving megapixel image sensor at room temperature without avalanche gain. Optica 4(12), 1474–1481 (2017)

    Article  Google Scholar 

  6. Dutton, N.A.W., Parmesan, L., Holmes, A.J.: 320×240 oversampled digital single photon counting image sensor. In: Proceedings of the IEEE Symposium on VLSI Circuits Digest of Technical Papers (2014)

    Google Scholar 

  7. Manz, J., Dehe, A., Schrag, G.: Modeling high signal-to-noise ratio in a novel silicon MEMS microphone with comb readout. In: Proceedings of SPIE 10246, Smart Sensors, Actuators, and MEMS VIII, 1024608 (2017)

    Google Scholar 

  8. Yoo, I., Sim, J., Yang, S.: Development of capacitive MEMS microphone based on slit-edge for high signal-to-noise ratio. In: Proceedings of 2018 IEEE Micro Electro Mechanical Systems (MEMS), 17749094 (2018)

    Google Scholar 

  9. Walser, S., Siegel, C., Winter, M.: MEMS microphones with narrow sensitivity distribution. Sens. Actuators A 247, 663–670 (2016)

    Article  Google Scholar 

  10. Wang, Z., Zou, Q.B., Song, Q.L.: The era of silicon MEMS microphone and look beyond. In: Proceedings of 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 15362431 (2015)

    Google Scholar 

  11. Tiete, J., Domínguez, F., Silva, B.D.: Sound compass: a distributed MEMS microphone array-based sensor for sound source localization. Sensors 14(2), 1918–1949 (2014)

    Article  Google Scholar 

  12. Turqueti, M., Oruklu, E., Saniie, J.: Smart acoustic sensor array system for real-time sound processing applications. In: Smart Sensors and MEMs Intelligent Devices and Microsystems for Industrial Application, pp. 492–517 (2014)

    Chapter  Google Scholar 

  13. Alessandro, P., Luca, F., Roberto, S.: Wearable speech enhancement system based on MEMS microphone array for disabled people. In: Proceedings of 2015 10th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 15220405 (2015)

    Google Scholar 

  14. Skordilis, Z.I., Tsiami, A., Maragos, P.: Multichannel speech enhancement using MEMS microphones. In: Proceedings of 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 15361564 (2015)

    Google Scholar 

  15. McDowell, G.R., Holmes-Smith, A.S., Uttamlal, M.: A robust and reliable optical trace oxygen sensor. In: Proceedings of SPIE 10231, Optical Sensors 2017, 102310T (2017)

    Google Scholar 

  16. Ma, W.W., He, Y.L., Zhao, Y.F.: CO2 sensing at atmospheric pressure using fiber Fabry-Perot interferometer. In: Proceedings of SPIE. 10231, Optical Sensors (2017)

    Google Scholar 

  17. Chmela, O., Sadílek, J., Samà, J.: Nanosensor array systems based on single functional wires selectively integrated and their sensing properties to C2H6O and NO2. In: Proceedings of SPIE. 10248, Nanotechnology VIII (2017)

    Google Scholar 

  18. Shi, C., Li, Z.L., Ren, W.: Experimental and modeling study of off-beam quartz-enhanced photoacoustic detection of nitrogen monoxide (NO) using a quantum cascade laser. In: Proceedings of SPIE 10025, Advanced Sensor Systems and Applications VII, 100250L (2016)

    Google Scholar 

  19. Fisser, M., Badcock, R.A., Teal, P.D.: Development of hydrogen sensors based on fiber Bragg grating with a palladium foil for online dissolved gas analysis in transformers. In: Proceedings of SPIE 10329, Optical Measurement Systems for Industrial Inspection X, 103292P (2017)

    Google Scholar 

  20. Bierer, B., Dinc, C., Gao, H., Wöllenstein, J.: MEMS-based array for hydrogen sulfide detection employing a phase transition. In: Proceedings of SPIE 10246, Smart Sensors, Actuators, and MEMS VIII, 102460D (2017)

    Google Scholar 

  21. Schmitt, K., Tarantik, K., Pannek, C.: Colorimetric sensor for bad odor detection using automated color correction. In: Proceedings of SPIE 10246, Smart Sensors, Actuators, and MEMS VIII, 102461F (2017)

    Google Scholar 

  22. Lupan, O., Adelung, R., Postica, V.: UV radiation and CH4 gas detection with a single ZnO:Pd nanowire. In: Proceedings of SPIE. 10105, Oxide-based Materials and Devices VIII (2017)

    Google Scholar 

  23. Mitsubayashi, K., Chien, P.J., Ye, M.: Fluorometric biosniffer (biochemical gas sensor) for breath acetone as a volatile indicator of lipid metabolism. In: Proceedings of SPIE 10013, SPIE BioPhotonics Australasia, 100131T (2016)

    Google Scholar 

  24. Fuchs, F., Hugger, S., Jarvis, J.P.: Hyperspectral imaging for standoff trace detection of explosives using quantum cascade lasers. In: Proceedings of SPIE. 10111, Quantum Sensing and Nano Electronics and Photonics XIV (2017)

    Google Scholar 

  25. Lee, S., Noh, T.G., Choi, J.H.: NIR spectroscopic sensing for point-of-need freshness assessment of meat, fish, vegetables and fruits. In: Proceedings of SPIE 10217, Sensing for Agriculture and Food Quality and Safety IX, 1021708 (2017)

    Google Scholar 

  26. Maas, D., Muilwijk, P., Putten, M.: Lab- and field-test results of MFIG, the first real-time vacuum-contamination sensor. In: Proceedings of SPIE 10145, Metrology, Inspection, and Process Control for Microlithography XXXI, 101452I (2017)

    Google Scholar 

  27. Gul, S., Martin, S., Cassidy, J.: Development of sensitive holographic devices for physiological metal ion detection. In: Proceedings of SPIE 10354, Nanoengineering: Fabrication, Properties, Optics, and Devices XIV, 103540C (2017)

    Google Scholar 

  28. Deng, S.J., McAuliffe, M.A.P., Salaj-Kosla, U.: A pH sensing system using fluorescence-based fibre optical sensor capable of small volume sample measurement. In: Proceedings of SPIE 10110, Photonic Instrumentation Engineering IV, 101101C (2017)

    Google Scholar 

  29. Novák, J., Laurenčíková, A., Hasenohrl, S.: Methanol sensor for integration with GaP nanowire photocathode. In: Proceedings of SPIE 10248, Nanotechnology VIII, 102480E (2017)

    Google Scholar 

  30. Galatus, R., Feier, B., Cristea, C.: SPR based hybrid electro-optic biosensor for β-lactam antibiotics determination in water. In: Proceedings of SPIE 10405, Remote Sensing and Modeling of Ecosystems for Sustainability XIV, 104050C (2017)

    Google Scholar 

  31. Lee, J., Lee, H., Kim, M.: Rapid detection of parasite in muscle fibers of fishes using a portable microscope imaging technique. In: Proceedings of SPIE 10217, Sensing for Agriculture and Food Quality and Safety IX (2017)

    Google Scholar 

  32. Fajkus, M., Nedoma, J., Martinek, R.: Fiber optic sensor encapsulated in polydimethylsiloxane for heart rate monitoring. In: Proceedings of SPIE 10208, Fiber Optic Sensors and Applications XIV, 102080W (2017)

    Google Scholar 

  33. Ke, J.Y., Chu, H.J., Hsu, Y.H.: A highly flexible piezoelectret-fiber pressure sensor based on highly aligned P(VDF-TrFE) electrospun fibers. In: Proceedings of SPIE 10164, Active and Passive Smart Structures and Integrated Systems 2017, 101642X (2017)

    Google Scholar 

  34. Li, Y.Q., Huang, P., Zhu, W.B., Fu, S.Y., Hu, N., Liao, K.: Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Scientific Reports 7, 45013 (2017)

    Google Scholar 

  35. Yin, J.Z., Santos, V.J., Posner, J.D.: Bioinspired flexible microfluidic shear force sensor skin. Sens. Actuators A 264, 289–297 (2017)

    Article  Google Scholar 

  36. Qian, M.Y., Yu, Y.L., Ren, N.K.: Sliding sensor using fiber Bragg grating for mechanical fingers. Opt. Express 26(1), 254–264 (2018)

    Article  Google Scholar 

  37. Chen, H.T., Song, Y., Guo, H.: Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy 51, 496–503 (2018)

    Article  Google Scholar 

  38. Lee, D.H., Kim, U., Jung, H.: A capacitive-type novel six-axis force/torque sensor for robotic applications. IEEE Sens. J. 16(8), 2290–2299 (2016)

    Article  Google Scholar 

  39. Phan, T.P., Chao, P.C.P., Cai, J.J.: A novel 6-DOF force/torque sensor for COBOTs and its calibration method. In: Proceedings of 2018 IEEE International Conference on Applied System Invention (ICASI), 17861840 (2018)

    Google Scholar 

  40. Peng, Z.Z., Wang, L., Yan, H.H.. Research on high-temperature sensing characteristics based on modular interference of single-mode multimode single-mode fiber. In: Proceedings of SPIE 10025, Advanced Sensor Systems and Applications VII, 1002519 (2016)

    Google Scholar 

  41. Sampath, U., Kim, D., Song, M.: Coupled-fiber Bragg grating sensor structure for cryogenic conditions. In: Proceedings of SPIE 10374, Optical Modeling and Performance Predictions IX, 1037408 (2017)

    Google Scholar 

  42. Xu, J., Bertke, M., Li, X.: Gravimetric humidity sensor based on ZnO nanorods covered piezoresistive Si microcantilever. In: Proceedings of SPIE. 10246, Smart Sensors, Actuators, and MEMS VIII (2017)

    Google Scholar 

  43. Lu, N.S., Ameri, S.K., Ha, T.: Epidermal electronic systems for sensing and therapy. In: Proceedings of SPIE 10167, Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017, 101670J (2017)

    Google Scholar 

  44. Yang, T.T., Xie, D., Li, Z.H.: Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater. Sci. Eng. R 115, 1–37 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiming Feng or Shangzhong Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, T., Feng, A., Jin, S., Shi, Y., Hou, B., Yan, Y. (2020). Research Progress on Artificial Intelligence Human Sensor. In: Peng, Y., Dong, X. (eds) Proceedings of 2018 International Conference on Optoelectronics and Measurement. Lecture Notes in Electrical Engineering, vol 567. Springer, Singapore. https://doi.org/10.1007/978-981-13-8595-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8595-7_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8594-0

  • Online ISBN: 978-981-13-8595-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics