Skip to main content

Arsenic Environmental Contamination Status in South Asia

  • Chapter
  • First Online:
Book cover Arsenic in Drinking Water and Food

Abstract

Arsenic (As) is a well-known potentially toxic metalloid, which naturally occurs in soils, sediments, and aquatic environments. Arsenic has no essential role for living organisms. Its exposure to living organisms including humans causes severe health issues. Arsenic contamination of groundwater is a global issue especially in the flood plain regions of Asia. Environmental contamination in soil plant systems with As poses severe human and environmental health risk, thereby affecting globally thousands of people with As toxicosis. During the last two to three decades, several studies have reported high levels of this metalloid in the groundwater and soil at the global scale, especially in Asian countries. Pakistan, Bangladesh, and India are among the most As-affected countries of the world. In this book chapter, we have discussed the current environmental contamination status of As in South Asia, especially focusing on Pakistan, China, Cambodia, Vietnam, Iran, and Nepal. This chapter highlights groundwater contamination status of As in South Asian countries. Moreover, soil contamination due to irrigation with As-contaminated water as well as its soil-plant transfer has been highlighted using the latest available data. At the end, this chapter discusses the possible health risk associated with the use of As-contaminated groundwater or food (vegetables and crops). Data regarding concentration of As in groundwater and soil of South Asian countries are not fully elucidated in the literature. Based on the current data, it is proposed that the actual status of groundwater contamination by As in many parts of South Asia is still unclear. Therefore, further studies are required to fully illustrate the As level in groundwater and its soil-plant transfer across the Asian countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Arsenic. In: Trace elements in terrestrial environments. Springer, New York, pp 219–261

    Chapter  Google Scholar 

  • Agusa T, Trang PTK, Lan VM, Anh DH, Tanabe S, Viet PH, Berg M (2014) Human exposure to arsenic from drinking water in Vietnam. Sci Total Environ 488:562–569

    Article  CAS  Google Scholar 

  • Ahmad A, Bhattacharya P (2018) Arsenic contamination of groundwater in Indus River Basin of Pakistan. In: Mukherjee A (ed) Groundwater of South Asia. Springer, Singapore, pp 393–403

    Chapter  Google Scholar 

  • Ahmed M, Kurosawa K (2017) Arsenic contamination of water-soil-crop system in an industrial area of Bangladesh. Int J Environ 6:76–86

    Article  Google Scholar 

  • Ahmed M, Matsumoto M, Kurosawa K (2018) Heavy metal contamination of irrigation water, soil, and vegetables in a multi-industry district of Bangladesh. Int J Environ Res 12:531–542

    Article  Google Scholar 

  • Alam M, Snow E, Tanaka A (2003) Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ 308:83–96

    Article  CAS  Google Scholar 

  • Alam MO, Shaikh WA, Chakraborty S, Avishek K, Bhattacharya T (2016) Groundwater arsenic contamination and potential health risk assessment of Gangetic Plains of Jharkhand, India. Expo Health 8:125–142

    Article  CAS  Google Scholar 

  • Ali W, Rasool A, Junaid M, Zhang H (2018) A comprehensive review on current status, mechanism, and possible sources of arsenic contamination in groundwater: a global perspective with prominence of Pakistan scenario. Environ Geochem Health. https://doi.org/10.1007/s10653-018-0169-x

    Article  CAS  Google Scholar 

  • Anawar H, Akai J, Mostofa K, Safiullah S, Tareq S (2002) Arsenic poisoning in groundwater: health risk and geochemical sources in Bangladesh. Environ Int 27:597–604

    Article  CAS  Google Scholar 

  • Arain M, Kazi T, Baig J, Jamali M, Afridi H, Shah A, Jalbani N, Sarfraz R (2009) Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Food Chem Toxicol 47:242–248

    Article  CAS  Google Scholar 

  • Arco-Lázaro E, Pardo T, Clemente R, Bernal MP (2018) Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: effects of Fe-rich amendments and organic and inorganic fertilisers. J Environ Manag 209:262–272

    Article  CAS  Google Scholar 

  • Aysha M, Zakir H, Haque R, Quadir Q, Choudhury TR, Quraishi S, Mollah M (2017) Health risk assessment for population via consumption of vegetables grown in soils artificially contaminated with arsenic. Arch Curr Res Int 10:1–12

    Article  Google Scholar 

  • Aziz Z, Bostick B, Zheng Y, Huq M, Rahman M, Ahmed K, Van Geen A (2017) Evidence of decoupling between arsenic and phosphate in shallow groundwater of Bangladesh and potential implications. Appl Geochem 77:167–177

    Article  CAS  Google Scholar 

  • Baig JA, Kazi TG, Shah AQ, Afridi HI, Kandhro GA, Khan S, Kolachi NF, Wadhwa SK, Shah F, Arain MB (2011) Evaluation of arsenic levels in grain crops samples, irrigated by tube well and canal water. Food Chem Toxicol 49:265–270

    Article  CAS  Google Scholar 

  • Barzegar R, Asghari Moghaddam A, Kazemian N (2015) Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environ Earth Sci 74:297–313. https://doi.org/10.1007/s12665-015-4123-2

    Article  CAS  Google Scholar 

  • Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626

    Article  CAS  Google Scholar 

  • Berg M, Stengel C, Trang PTK, Viet PH, Sampson ML, Leng M, Samreth S, Fredericks D (2007) Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Sci Total Environ 372:413–425

    Article  CAS  Google Scholar 

  • hattacharya P (2017) Assessment of arsenic accumulation by different varieties of rice (Oryza sativa L.) irrigated with arsenic-contaminated groundwater in West Bengal (India). Environ Pollut Protect 2:92–99

    Google Scholar 

  • Bhattacharya P, Mukherjee A (2015) Groundwater arsenic in India: source, distribution, effects and alternate safe drinking water sources

    Google Scholar 

  • Bhattacharya P, Hasan MA, Sracek O, Smith E, Ahmed KM, von Brömssen M, Huq SMI, Naidu R (2009) Groundwater chemistry and arsenic mobilization in the Holocene flood plains in south-central Bangladesh. Environ Geochem Health 31:23–43. https://doi.org/10.1007/s10653-008-9230-5

    Article  CAS  Google Scholar 

  • Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in groundwater of West Bengal, India: a review of human health risks and assessment of possible intervention options. Sci Total Environ 612:148–169

    Article  CAS  Google Scholar 

  • Bibi M, Ahmed F, Ishiga H (2008) Geochemical study of arsenic concentrations in groundwater of the Meghna River Delta, Bangladesh. J Geochem Explor 97:43–58

    Article  CAS  Google Scholar 

  • Bondada BR, Tu S, Ma LQ (2004) Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.). Sci Total Environ 332:61–70

    Article  CAS  Google Scholar 

  • Brahman KD, Kazi TG, Afridi HI, Naseem S, Arain SS, Ullah N (2013a) Evaluation of high levels of fluoride, arsenic species and other physicochemical parameters in underground water of two sub districts of Tharparkar, Pakistan: a multivariate study. Water Res 47:1005–1020

    Article  CAS  Google Scholar 

  • Brahman KD, Kazi TG, Afridi HI, Naseem S, Arain SS, Wadhwa SK, Shah F (2013b) Simultaneously evaluate the toxic levels of fluoride and arsenic species in underground water of Tharparkar and possible contaminant sources: a multivariate study. Ecotoxicol Environ Saf 89:95–107

    Article  CAS  Google Scholar 

  • Brahman KD, Kazi TG, Baig JA, Afridi HI, Khan A, Arain SS, Arain MB (2014) Fluoride and arsenic exposure through water and grain crops in Nagarparkar, Pakistan. Chemosphere 100:182–189

    Article  CAS  Google Scholar 

  • Bui ATK, Nguyen HTH, Nguyen MN, Tran T-HT, Vu TV, Nguyen CH, Reynolds HL (2016) Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam. Environ Monit Assess 188:525. https://doi.org/10.1007/s10661-016-5535-5

    Article  CAS  Google Scholar 

  • Cao H, Xie X, Wang Y, Pi K, Li J, Zhan H, Liu P (2018) Predicting the risk of groundwater arsenic contamination in drinking water wells. J Hydrol 560:318–325. https://doi.org/10.1016/j.jhydrol.2018.03.007

    Article  CAS  Google Scholar 

  • Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111:1194

    Article  CAS  Google Scholar 

  • Chakraborti D, Singh EJ, Das B, Shah BA, Hossain MA, Nayak B, Ahamed S, Singh NR (2008) Groundwater arsenic contamination in Manipur, one of the seven North-Eastern Hill states of India: a future danger. Environ Geol 56:381–390

    Article  CAS  Google Scholar 

  • Chakraborti D, Das B, Rahman MM, Chowdhury UK, Biswas B, Goswami A, Nayak B, Pal A, Sengupta MK, Ahamed S (2009) Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol Nutr Food Res 53:542–551

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Murrill M, Dey S, Mukherjee SC, Dhar RK, Biswas BK, Chowdhury UK, Roy S (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Mukherjee A, Alauddin M, Hassan M, Dutta RN, Pati S, Mukherjee SC, Roy S, Quamruzzman Q (2015) Groundwater arsenic contamination in Bangladesh—21 Years of research. J Trace Elem Med Biol 31:237–248

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016a) Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere 152:520–529

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC (2016b) Arsenic contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: risk evaluation. Environ Sci Pollut Res 23:9492–9504. https://doi.org/10.1007/s11356-016-6149-8

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Chatterjee A, Das D, Nayak B, Pal A, Chowdhury UK, Ahmed S, Biswas BK, Sengupta MK, Hossain MA, Samanta G, Roy MM, Dutta RN, Saha KC, Mukherjee SC, Pati S, Kar PB, Mukherjee A, Kumar M (2017) Groundwater arsenic contamination and its health effects in India. Hydrogeol J 25:1165–1181. https://doi.org/10.1007/s10040-017-1556-6

    Article  CAS  Google Scholar 

  • Chakraborti D, Singh S, Rahman M, Dutta R, Mukherjee S, Pati S, Kar P (2018) Groundwater arsenic contamination in the Ganga River Basin: a future health danger. Int J Environ Res Public Health 15:180

    Article  CAS  Google Scholar 

  • Chang CY, Yu HY, Chen JJ, Li FB, Zhang HH, Liu CP (2014) Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ Monit Assess 186:1547–1560. https://doi.org/10.1007/s10661-013-3472-0

    Article  CAS  Google Scholar 

  • Chang J-S, Yoon I-H, Kim K-W (2018) Arsenic biotransformation potential of microbial arsH responses in the biogeochemical cycling of arsenic-contaminated groundwater. Chemosphere 191:729–737. https://doi.org/10.1016/j.chemosphere.2017.10.044

    Article  CAS  Google Scholar 

  • Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z (2002) Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chin Sci Bull 47:902–905

    Article  CAS  Google Scholar 

  • Chen T, Su Y, Yuan X (2018a) Influences of the petroleum-recovering activity on the arsenic level in groundwater of Kuitun, Xinjiang, China. Hum Ecol Risk Assess: Int J 24:1–14

    Article  CAS  Google Scholar 

  • Chen Y, Xu J, Lv Z, Huang L, Jiang J (2018b) Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils. J Environ Manag 217:646–653

    Article  CAS  Google Scholar 

  • Chou M-L, Jean J-S, Yang C-M, Hseu Z-Y, Chen Y-H, Wang H-L, Das S, Chou L-S (2016) Inhibition of ethylenediaminetetraacetic acid ferric sodium salt (EDTA-Fe) and calcium peroxide (CaO2) on arsenic uptake by vegetables in arsenic-rich agricultural soil. J Geochem Explor 163:19–27. https://doi.org/10.1016/j.gexplo.2016.01.004

    Article  CAS  Google Scholar 

  • Dahal BM, Fuerhacker M, Mentler A, Shrestha RR, Blum WE (2008a) Screening of arsenic in irrigation water used for vegetable production in Nepal. Arch Agron Soil Sci 54:41–51

    Article  CAS  Google Scholar 

  • Dahal BM, Fuerhacker M, Mentler A, Karki KB, Shrestha RR, Blum WE (2008b) Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environ Pollut 155:157–163. https://doi.org/10.1016/j.envpol.2007.10.024

    Article  CAS  Google Scholar 

  • Das D, Samanta G, Mandal BK, Chowdhury TR, Chanda CR, Chowdhury PP, Basu GK, Chakraborti D (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health 18:5–15

    Article  CAS  Google Scholar 

  • Das H, Mitra AK, Sengupta P, Hossain A, Islam F, Rabbani G (2004) Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  Google Scholar 

  • Das B, Rahman MM, Nayak B, Pal A, Chowdhury UK, Mukherjee SC, Saha KC, Pati S, Quamruzzaman Q, Chakraborti D (2009) Groundwater arsenic contamination, its health effects and approach for mitigation in West Bengal, India and Bangladesh. Water Qual Expo Health 1:5–21

    Article  CAS  Google Scholar 

  • Dittmar J, Voegelin A, Roberts LC, Hug SJ, Saha GC, Ali MA, Badruzzaman ABM, Kretzschmar R (2007) Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil. Environ Sci Technol 41:5967–5972. https://doi.org/10.1021/es0702972

    Article  CAS  Google Scholar 

  • Duan Y, Gan Y, Wang Y, Deng Y, Guo X, Dong C (2015) Temporal variation of groundwater level and arsenic concentration at Jianghan Plain, central China. J Geochem Explor 149:106–119

    Article  CAS  Google Scholar 

  • Duan Y, Gan Y, Wang Y, Liu C, Yu K, Deng Y, Zhao K, Dong C (2017) Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China. Sci Total Environ 607:992–1000

    Article  CAS  Google Scholar 

  • Fan H, Su C, Wang Y, Yao J, Zhao K, Wang Y, Wang G (2008) Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105:529–539

    Article  CAS  Google Scholar 

  • FAO (1992) Wastewater treatment and use in agriculture – FAO irrigation and drainage. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Farooqi A, Masuda H, Firdous N (2007a) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut 145:839–849

    Article  CAS  Google Scholar 

  • Farooqi A, Masuda H, Kusakabe M, Naseem M, Firdous N (2007b) Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochem J 41:213–234

    Article  CAS  Google Scholar 

  • Farooqi A, Masuda H, Siddiqui R, Naseem M (2009) Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan. Arch Environ Contam Toxicol 56:693–706

    Article  CAS  Google Scholar 

  • Fatima S, Hussain I, Rasool A, Xiao T, Farooqi A (2018) Comparison of two alluvial aquifers shows the probable role of river sediments on the release of arsenic in the groundwater of district Vehari, Punjab, Pakistan. Environ Earth Sci 77:382. https://doi.org/10.1007/s12665-018-7542-z

    Article  CAS  Google Scholar 

  • Fatta-Kassinos D, Kalavrouziotis I, Koukoulakis P, Vasquez M (2011) The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci Total Environ 409:3555–3563

    Article  CAS  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127

    Article  CAS  Google Scholar 

  • Fernández-Olmo I, Andecochea C, Ruiz S, Fernández-Ferreras JA, Irabien A (2016) Local source identification of trace metals in urban/industrial mixed land-use areas with daily PM10 limit value exceedances. Atmos Res 171:92–106

    Article  CAS  Google Scholar 

  • Gan Y, Wang Y, Duan Y, Deng Y, Guo X, Ding X (2014) Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. J Geochem Explor 138:81–93

    Article  CAS  Google Scholar 

  • Gatta G, Gagliardi A, Disciglio G, Lonigro A, Francavilla M, Tarantino E, Giuliani MM (2018) Irrigation with treated municipal wastewater on artichoke crop: assessment of soil and yield heavy metal content and human risk. Water 10:255

    Article  CAS  Google Scholar 

  • Gault AG, Rowland HA, Charnock JM, Wogelius RA, Gomez-Morilla I, Vong S, Leng M, Samreth S, Sampson ML, Polya DA (2008) Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal province, Cambodia. Sci Total Environ 393:168–176

    Article  CAS  Google Scholar 

  • Ghasemidehkordi B, Malekirad AA, Nazem H, Fazilati M, Salavati H, Rezaei M (2018) Arsenic and boron levels in irrigation water, soil, and green leafy vegetables. Int J Veg Sci 24:115–121

    Article  Google Scholar 

  • Gong C, Wang Z, Dong F, Xing Y, Sun Y (2018) Human health risk assessment from arsenic dietary exposures in Yantai. J Food Saf Qual 9:3650–3655

    Google Scholar 

  • Govil PK, Krishna AK (2018) Soil and water contamination by potentially hazardous elements: a case history from India. In: Environmental geochemistry (2nd edn). Elsevier, pp 567–597

    Google Scholar 

  • Grybos M, Davranche M, Gruau G, Petitjean P (2007) Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J Colloid Interface Sci 314:490–501

    Article  CAS  Google Scholar 

  • Guo H, Zhang Y, Xing L, Jia Y (2012) Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Appl Geochem 27:2187–2196

    Article  CAS  Google Scholar 

  • Guo H, Zhang Y, Jia Y, Zhao K, Kim K (2013) Spatial and temporal evolutions of groundwater arsenic approximately along the flow path in the Hetao basin, Inner Mongolia. Chin Sci Bull 58:3070–3079

    Article  CAS  Google Scholar 

  • Guo H, Zhang D, Ni P, Cao Y, Li F (2017) Hydrogeological and geochemical comparison of high arsenic groundwaters in inland basins, PR China. Proc Earth Planet Sci 17:416–419

    Article  Google Scholar 

  • Gurung JK, Ishiga H, Khadka MS (2005) Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environ Geol 49:98–113. https://doi.org/10.1007/s00254-005-0063-6

    Article  CAS  Google Scholar 

  • Halim M, Majumder R, Nessa S, Hiroshiro Y, Uddin M, Shimada J, Jinno K (2009a) Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. J Hazard Mater 164:1335–1345

    Article  CAS  Google Scholar 

  • Halim MA, Majumder RK, Nessa SA, Oda K, Hiroshiro Y, Saha BB, Hassain SM, Latif SA, Islam MA, Jinno K (2009b) Groundwater contamination with arsenic in Sherajdikhan, Bangladesh: geochemical and hydrological implications. Environ Geol 58:73–84. https://doi.org/10.1007/s00254-008-1493-8

    Article  CAS  Google Scholar 

  • Hasan MA, Bhattacharya P, Sracek O, Ahmed KM, von Brömssen M, Jacks G (2009) Geological controls on groundwater chemistry and arsenic mobilization: hydrogeochemical study along an E–W transect in the Meghna basin, Bangladesh. J Hydrol 378:105–118

    Article  CAS  Google Scholar 

  • Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, Gholampour A, Arhami M, Kashani H, Zare A (2015) Characterization of PAHs and metals in indoor/outdoor PM 10/PM 2.5/PM 1 in a retirement home and a school dormitory. Sci Total Environ 527:100–110

    Article  CAS  Google Scholar 

  • He J, Charlet L (2013) A review of arsenic presence in China drinking water. J Hydrol 492:79–88

    Article  CAS  Google Scholar 

  • Herath S, Ayala H, Kawakami T, Nagasawa S, Serikawa Y, Motoyama A, Chaminda G, Weragoda S, Yatigammana S, Amarasooriya A (2018) Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology. J Water Health 16:212–222

    Article  Google Scholar 

  • Hoang TH, Bang S, Kim K-W, Nguyen MH, Dang DM (2010) Arsenic in groundwater and sediment in the Mekong River delta, Vietnam. Environ Pollut 158:2648–2658

    Article  CAS  Google Scholar 

  • Huang R-Q, Gao S-F, Wang W-L, Staunton S, Wang G (2006) Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci Total Environ 368:531–541

    Article  CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  Google Scholar 

  • Huq ME, Su C, Fahad S, Li J, Sarven MS, Liu R (2018) Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh). Environ Sci Pollut Res 25:15830–15843

    Article  CAS  Google Scholar 

  • Jain C, Sharma S, Singh S (2018) Physico-chemical characteristics and hydrogeological mechanisms in groundwater with special reference to arsenic contamination in Barpeta District, Assam (India). Environ Monit Assess 190:417

    Article  CAS  Google Scholar 

  • JICA (1999) Japanese International Cooperation Agency. The study of groundwater development in Southern Cambodia. Unpublished Draft Report by Kokusai Kogyo Co Ltd to Ministry of Rural Development, Phnom Penh, Cambodia

    Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes C, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  Google Scholar 

  • Kapaj S, Peterson H, Liber K, Bhattacharya P (2006) Human health effects from chronic arsenic poisoning – a review. J Environ Sci Health A 41:2399–2428

    Article  CAS  Google Scholar 

  • Karimi N, Alavi M (2016) Arsenic contamination and accumulation in soil, groundwater and wild plant species from Qorveh County, Iran. Biharean Biol 10:69–73

    Google Scholar 

  • Karimi N, Ghaderian SM, Maroofi H, Schat H (2009) Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. Int J Phytoremediation 12:159–173

    Article  CAS  Google Scholar 

  • Kazi TG, Arain MB, Baig JA, Jamali MK, Afridi HI, Jalbani N, Sarfraz RA, Shah AQ, Niaz A (2009) The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci Total Environ 407:1019–1026

    CAS  Google Scholar 

  • Keshavarzi B, Moore F, Mosaferi M, Rahmani F (2011) The source of natural arsenic contamination in groundwater, west of Iran. Water Qual Expo Health 3:135–147

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Rafiq M, Bakhat HF, Imran M, Abbas T, Bibi I, Dumat C (2017) Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. In: Enhancing cleanup of environmental pollutants. Springer, Cham, pp 97–140

    Chapter  Google Scholar 

  • Khalid S, Shahid M, Natasha, Bibi I, Sarwar T, Shah A, Niazi N (2018) A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int J Environ Res Public Health 15:895

    Article  CAS  Google Scholar 

  • Khan A, Husain V, Bakhtiari AE, Khan H, Arsalan M (2017) Groundwater arsenic contamination in semi-urban areas of Tando Muhammad Khan District: a case study from deltaic flood plain of Sindh, Pakistan. Sustain Environ 2:171

    Article  Google Scholar 

  • Kim K-W, Chanpiwat P, Hanh HT, Phan K, Sthiannopkao S (2011) Arsenic geochemistry of groundwater in Southeast Asia. Front Med 5:420–433

    Article  Google Scholar 

  • Kumar M, Rahman MM, Ramanathan A, Naidu R (2016) Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: health risk index. Sci Total Environ 539:125–134

    Article  CAS  Google Scholar 

  • Lai H-Y, Lee C-H, Chen Z-S (2018) Taiwan’s experiences on soil amendments, phytoremediation, and soil water managements for the cadmium-and arsenic-contaminated soils. In: Twenty years of research and development on soil pollution and remediation in China. Springer, Singapore, pp 441–451

    Chapter  Google Scholar 

  • Lawson M, Polya DA, Boyce AJ, Bryant C, Ballentine CJ (2016) Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters. Geochim Cosmochim Acta 178:160–177

    Article  CAS  Google Scholar 

  • Lear G, Song B, Gault A, Polya D, Lloyd J (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048

    Article  CAS  Google Scholar 

  • Li G, Sun G-X, Williams PN, Nunes L, Zhu Y-G (2011) Inorganic arsenic in Chinese food and its cancer risk. Environ Int 37:1219–1225

    Article  CAS  Google Scholar 

  • Li K, Liang T, Wang L, Yang Z (2015) Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China. J Geogr Sci 25:1439–1451

    Article  Google Scholar 

  • Li L, Hang Z, Yang W-T, Gu J-F, Liao B-H (2017) Arsenic in vegetables poses a health risk in the vicinity of a mining area in the southern Hunan Province, China. Hum Ecol Risk Assess Int J 23:1315–1329

    Article  CAS  Google Scholar 

  • Li R, Kuo Y-M, Liu W-w, Jang C-S, Zhao E, Yao L (2018) Potential health risk assessment through ingestion and dermal contact arsenic-contaminated groundwater in Jianghan Plain, China. Environ Geochem Health 40:1585–1599

    Article  CAS  Google Scholar 

  • Liao X-Y, Chen T-B, Xie H, Liu Y-R (2005) Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ Int 31:791–798

    Article  CAS  Google Scholar 

  • Liu J, Zheng B, Aposhian HV, Zhou Y, Chen M-L, Zhang A, Waalkes MP (2002) Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. J Peripher Nerv Syst 7:208–208

    Article  Google Scholar 

  • Liu H, Probst A, Liao B (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166

    Article  CAS  Google Scholar 

  • Liu C-P, Luo C-L, Gao Y, Li F-B, Lin L-W, Wu C-A, Li X-D (2010) Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ Pollut 158:820–826. https://doi.org/10.1016/j.envpol.2009.09.029

    Article  CAS  Google Scholar 

  • Lu Y, Dong F, Deacon C, Chen H-j, Raab A, Meharg AA (2010) Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ Pollut 158:1536–1541

    Article  CAS  Google Scholar 

  • Luu TTG, Sthiannopkao S, Kim K-W (2009) Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia. Environ Int 35:455–460

    Article  CAS  Google Scholar 

  • Mafuyai GM, Eneji IS, Sha’Ato R (2014) Concentration of heavy metals in respirable dust in Jos metropolitan area, Nigeria. Open J Air Pollut 3:10

    Article  CAS  Google Scholar 

  • Mahar MT, Khuhawar MY, Jahangir TM, Baloch MA (2015) Determination of arsenic contents in groundwater of district Rahim Yar Khan southern Punjab, Pakistan. Arab J Geosci 8:10983–10994

    Article  CAS  Google Scholar 

  • Malana MA, Khosa MA (2011) Groundwater pollution with special focus on arsenic, Dera Ghazi Khan-Pakistan. J Saudi Chem Soc 15:39–47

    Article  CAS  Google Scholar 

  • Mandal U, Singh P, Kundu AK, Chatterjee D, Nriagu J, Bhowmick S (2019) Arsenic retention in cooked rice: effects of rice type, cooking water, and indigenous cooking methods in West Bengal, India. Sci Total Environ 648:720–727. https://doi.org/10.1016/j.scitotenv.2018.08.172

    Article  CAS  Google Scholar 

  • Merola R, Hien T, Quyen D, Vengosh A (2015) Arsenic exposure to drinking water in the Mekong Delta. Sci Total Environ 511:544–552

    Article  CAS  Google Scholar 

  • Mondal S, Bandopadhyay P, Dutta P (2018) Arsenic contamination in cropping systems under varying irrigation sources in the deltaic plain of India. Arch Agron Soil Sci 64:1759–1767

    Article  CAS  Google Scholar 

  • Mosaferi M, Yunesian M, Dastgiri S, Mesdaghinia A, Esmailnasab N (2008) Prevalence of skin lesions and exposure to arsenic in drinking water in Iran. Sci Total Environ 390:69–76

    Article  CAS  Google Scholar 

  • Mosaferi M, Mahmoudi M, Pourakbar M, Sheykholeslami S (2015) Groundwater quality assessment in a volcanic region, Iran. In: Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes

    Google Scholar 

  • Mueller B (2018) Preliminary trace element analysis of arsenic in Nepalese groundwater may pinpoint its origin. Environ Earth Sci 77:35. https://doi.org/10.1007/s12665-017-7154-z

    Article  CAS  Google Scholar 

  • Mueller B, Hug SJ (2018) Climatic variations and de-coupling between arsenic and iron in arsenic contaminated ground water in the lowlands of Nepal. Chemosphere 210:347–358. https://doi.org/10.1016/j.chemosphere.2018.07.024

    Article  CAS  Google Scholar 

  • Mukherjee A, Fryar AE, Eastridge EM, Nally RS, Chakraborty M, Scanlon BR (2018) Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India. Sci Total Environ 645:1371–1387

    Article  CAS  Google Scholar 

  • Murphy T, Phan K, Yumvihoze E, Irvine K, Wilson K, Lean D, Ty B, Poulain A, Laird B, Chan LHM (2018) Groundwater irrigation and arsenic speciation in rice in Cambodia. J Health Pollut 8:180911

    Article  Google Scholar 

  • Murtaza G, Habib R, Shan A, Sardar K, Rasool F, Javeed T (2017) Municipal solid waste and its relation with groundwater contamination in Multan. Pakistan IJAR 3:434–441

    Google Scholar 

  • Myint O, Hla NH (2017) Effectiveness of health education on knowledge of groundwater-dependent rural residents regarding arsenic-contaminated water at Kyonpyaw township. Myanmar Health Sci Res J 29:44–50

    Google Scholar 

  • Nakaya S, Natsume H, Masuda H, Mitamura M, Biswas DK, Seddique AA (2011) Effect of groundwater flow on forming arsenic contaminated groundwater in Sonargaon, Bangladesh. J Hydrol 409:724–736

    Article  CAS  Google Scholar 

  • Natasha, Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018a) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934. https://doi.org/10.1016/j.envpol.2017.12.019

    Article  CAS  Google Scholar 

  • Natasha, Shahid M, Dumat C, Khalid S, Rabbani F, Farooq ABU, Amjad M, Abbas G, Niazi NK (2018b) Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-018-3867-0

    Article  CAS  Google Scholar 

  • National Research Council (1977) Arsenic: medical and biologic effects of environmental pollutants. The National Academies Press, Washington, DC

    Google Scholar 

  • Naujokas M, Anderson B, Ahsan H, Vasken A, Graziano J, C T, WA S (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302

    Article  CAS  Google Scholar 

  • Neidhardt H, Norra S, Tang X, Guo H, Stüben D (2012) Impact of irrigation with high arsenic burdened groundwater on the soil-plant system: results from a case study in the Inner Mongolia, China. Environ Pollut 163:8–13

    Article  CAS  Google Scholar 

  • Nga DV, Trang PTK, Duyen VT, Mai TT, Lan VTM, Viet PH, Postma D, Jakobsen R (2018) Spatial variations of arsenic in groundwater from a transect in the Northwestern Hanoi. Vietnam J Earth Sci 40:70–77

    Google Scholar 

  • Nguyen VA, Bang S, Viet PH, Kim K-W (2009) Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environ Int 35:466–472

    Article  CAS  Google Scholar 

  • Niazi NK, Singh B, Shah P (2011) Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol 45:7135–7142

    Article  CAS  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Shaheen SM, Rinklebe J, Wang H, Murtaza B, Islam E, Farrakh Nawaz M, Lüttge A (2017) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.10.063

    Article  CAS  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018a) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41

    Article  CAS  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Shaheen SM, Rinklebe J, Wang H, Murtaza B, Islam E, Nawaz MF (2018b) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651

    Article  CAS  Google Scholar 

  • O’Neill A, Phillips D, Kok S, Chea E, Seng B, Gupta BS (2013) Arsenic in groundwater and its influence on exposure risks through traditionally cooked rice in Prey Veng Province, Cambodia. J Hazard Mater 262:1072–1079

    Article  CAS  Google Scholar 

  • Oucher N, Kerbachi R, Ghezloun A, Merabet H (2015) Magnitude of air pollution by heavy metals associated with aerosols particles in algiers. Energy Procedia 74:51–58

    Article  CAS  Google Scholar 

  • Patel KS, Sahu BL, Dahariya NS, Bhatia A, Patel RK, Matini L, Sracek O, Bhattacharya P (2017) Groundwater arsenic and fluoride in Rajnandgaon District, Chhattisgarh, northeastern India. Appl Water Sci 7:1817–1826

    Article  CAS  Google Scholar 

  • Pham LH, Nguyen HT, Van Tran C, Nguyen HM, Nguyen TH, Tu MB (2017) Arsenic and other trace elements in groundwater and human urine in Ha Nam province, the Northern Vietnam: contamination characteristics and risk assessment. Environ Geochem Health 39:517–529. https://doi.org/10.1007/s10653-016-9831-3

    Article  CAS  Google Scholar 

  • Phan KA, Nguyen TG (2018) Groundwater quality and human health risk assessment related to groundwater consumption in An Giang province. Viet Nam J Vietnam Environ 10:85–91

    Google Scholar 

  • Phan K, Sthiannopkao S, Kim K-W, Wong MH, Sao V, Hashim JH, Yasin MSM, Aljunid SM (2010) Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res 44:5777–5788

    Article  CAS  Google Scholar 

  • Phan K, Sthiannopkao S, Heng S, Phan S, Huoy L, Wong MH, Kim K-W (2013) Arsenic contamination in the food chain and its risk assessment of populations residing in the Mekong River basin of Cambodia. J Hazard Mater 262:1064–1071

    Article  CAS  Google Scholar 

  • Phan K, Phan S, Heng S, Huoy L, Kim K-W (2014) Assessing arsenic intake from groundwater and rice by residents in Prey Veng province, Cambodia. Environ Pollut 185:84–89

    Article  CAS  Google Scholar 

  • Podgorski JE, Eqani SAMAS, Khanam T, Ullah R, Shen H, Berg M (2017) Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci Adv 3:e1700935. https://doi.org/10.1126/sciadv.1700935

    Article  CAS  Google Scholar 

  • Polya DA, Polizzotto ML, Fendorf S, Lado LR, Hegan A, Lawson M, Rowland HA, Giri AK, Mondal D, Sovann C (2010) Arsenic in groundwaters of Cambodia. In: Water resources and development in Southeast Asia. Southeast Asia Center, New York, pp 31–56

    Google Scholar 

  • Postma D, Trang PTK, Sø HU, Lan VM, Jakobsen R (2017) Reactive transport modeling of arsenic mobilization in groundwater of the Red River floodplain, Vietnam. Proc Earth Planet Sci 17:85–87

    Article  Google Scholar 

  • Qurat-ul-Ain, Farooqi A, Sultana J, Masood N (2017) Arsenic and fluoride co-contamination in shallow aquifers from agricultural suburbs and an industrial area of Punjab, Pakistan: spatial trends, sources and human health implications. Toxicol Ind Health 33:655–672

    Article  CAS  Google Scholar 

  • Raessler M (2018) The arsenic contamination of drinking and groundwaters in Bangladesh: featuring biogeochemical aspects and implications on public health. Arch Environ Contam Toxicol 75:1–7. https://doi.org/10.1007/s00244-018-0511-4

    Article  CAS  Google Scholar 

  • Rafiq M, Shahid M, Abbas G, Shamshad S, Khalid S, Niazi NK, Dumat C (2017a) Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytoremediation 19:662–669

    Article  CAS  Google Scholar 

  • Rafiq M, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B (2017b) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediments. https://doi.org/10.1007/s11368-017-1693-5

    Article  CAS  Google Scholar 

  • Rafiq M, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B (2018) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediments 18:2271–2281

    Article  CAS  Google Scholar 

  • Rahman MA, Hashem MA (2018) Arsenic, iron and chloride in drinking water at primary school, Satkhira, Bangladesh. Phys Chem Earth, Parts A/B/C 109:49–58

    Article  Google Scholar 

  • Rahman MM, Naidu R, Bhattacharya P (2009) Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health 31:9–21

    Article  CAS  Google Scholar 

  • Rahman MM, Dong Z, Naidu R (2015) Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: potential cancer risk. Chemosphere 139:54–64

    Article  CAS  Google Scholar 

  • Rahman MA, Rahman A, Khan MZK, Renzaho AM (2018) Human health risks and socio-economic perspectives of arsenic exposure in bangladesh: a scoping review. Ecotoxicol Environ Saf 150:335–343

    Article  CAS  Google Scholar 

  • Rashed M (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178:739–746

    Article  CAS  Google Scholar 

  • Rasheed H, Kay P, Slack R, Gong YY, Carter A (2017) Human exposure assessment of different arsenic species in household water sources in a high risk arsenic area. Sci Total Environ 584:631–641. https://doi.org/10.1016/j.scitotenv.2017.01.089

    Article  CAS  Google Scholar 

  • Rasool A, Xiao T, Farooqi A, Shafeeque M, Masood S, Ali S, Fahad S, Nasim W (2016) Arsenic and heavy metal contaminations in the tube well water of Punjab, Pakistan and risk assessment: a case study. Ecol Eng 95:90–100

    Article  Google Scholar 

  • Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agric Ecosyst Environ 109:310–322. https://doi.org/10.1016/j.agee.2005.02.025

    Article  CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley, New York

    Book  Google Scholar 

  • Rehman ZU, Khan S, Qin K, Brusseau ML, Shah MT, Din I (2016) Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Sci Total Environ 550:321–329

    Article  CAS  Google Scholar 

  • Reza AS, Jean J-S, Yang H-J, Lee M-K, Woodall B, Liu C-C, Lee J-F, Luo S-D (2010a) Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh. Water Res 44:2021–2037

    Article  CAS  Google Scholar 

  • Reza AS, Jean J-S, Lee M-K, Liu C-C, Bundschuh J, Yang H-J, Lee J-F, Lee Y-C (2010b) Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Water Res 44:5556–5574

    Article  CAS  Google Scholar 

  • Ribeiro AB, Mateus EP, Couto N (2016) Electrokinetics across disciplines and continents. Springer, Cham

    Book  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Adrees M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Qayyum MF, Nawaz R (2018) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manag 206:676–683

    Article  CAS  Google Scholar 

  • Rodríguez-Lado L, Sun G, Berg M, Zhang Q, Xue H, Zheng Q, Johnson CA (2013) Groundwater Arsenic Contamination Throughout China. Science 341:866–868. https://doi.org/10.1126/science.1237484

    Article  CAS  Google Scholar 

  • Safiuddin M, Shirazi S, Yusoff S (2011) Arsenic contamination of groundwater in Bangladesh: a review. Int J Phys Sci 6:6791–6800

    Google Scholar 

  • Saha GC, Ali MA (2007) Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci Total Environ 379:180–189

    Article  CAS  Google Scholar 

  • Sarkar D, Datta R, Hannigan R (2011) Concepts and applications in environmental geochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Sauve S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131

    Article  CAS  Google Scholar 

  • Seddique AA, Masuda H, Mitamura M, Shinoda K, Yamanaka T, Itai T, Maruoka T, Uesugi K, Ahmed KM, Biswas DK (2008) Arsenic release from biotite into a Holocene groundwater aquifer in Bangladesh. Appl Geochem 23:2236–2248

    Article  CAS  Google Scholar 

  • Seyfferth AL, McCurdy S, Schaefer MV, Fendorf S (2014) Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia. Environ Sci Technol 48:4699–4706

    Article  CAS  Google Scholar 

  • Shah BA (2017) Groundwater arsenic contamination from parts of the Ghaghara Basin, India: influence of fluvial geomorphology and Quaternary morphostratigraphy. Appl Water Sci 7:2587–2595

    Article  CAS  Google Scholar 

  • Shahab A, Qi S, Zaheer M (2018) Arsenic contamination, subsequent water toxicity, and associated public health risks in the lower Indus plain, Sindh province, Pakistan. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2320-8

  • Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E (2014a) Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments 14:835–843

    Article  CAS  Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014b) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam Int J 23:389–416

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017a) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063

    Article  CAS  Google Scholar 

  • Shahid M, Khalid M, Dumat C, Khalid S, Niazi NK, Imran M, Bibi I, Ahmad I, Hammad HM, Tabassum RA (2017b) Arsenic level and risk assessment of groundwater in Vehari, Punjab Province, Pakistan. Expo Health 10:229–239. https://doi.org/10.1007/s12403-017-0257-7

    Article  CAS  Google Scholar 

  • Shahid M, Niazi NK, Dumat C, Naidu R, Khalid S, Rahman MM, Bibi I (2018) A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ Pollut 242:307–319

    Article  CAS  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390

    Article  CAS  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Murtaza G, Kunhikrishnan A, Seshadri B, Shahid M, Ali S, Bolan NS, Ok YS (2016) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol 46:467–499

    Article  CAS  Google Scholar 

  • Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A, Naidu R, Rahman MM, Murtaza G, Lüttge A (2018a) The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 199:737–746

    Article  CAS  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Shahid M, Sharif F, Bashir S, Shaheen SM, Wang H, Tsang DC, Ok YS (2018b) Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Sci Total Environ 645:1444–1455

    Article  CAS  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Shahid M, Saqib ZA, Nawaz MF, Shaheen SM, Wang H, Tsang DC, Bundschuh J (2019) Exploring the arsenic removal potential of various biosorbents from water. Environ Int 123:567–579

    Article  CAS  Google Scholar 

  • Shamsudduha M, Chandler R, Taylor R, Ahmed K (2009) Recent trends in groundwater levels in a highly seasonal hydrological system: the Ganges-Brahmaputra-Meghna Delta. Hydrol Earth Syst Sci 13:2373–2385

    Article  Google Scholar 

  • Sharifi Z, Akbar A (2017) Assessment of arsenic, nitrate and phosphorus pollutions in shallow groundwater of the rural area in Kurdistan Province (Iran). Curr World Environ 7:233–241

    Article  Google Scholar 

  • Sharma S, Kaur I, Nagpal AK (2018) Estimation of arsenic, manganese and iron in mustard seeds, maize grains, groundwater and associated human health risks in Ropar wetland, Punjab, India, and its adjoining areas. Environ Monit Assess 190:385

    Article  CAS  Google Scholar 

  • Shen M, Guo H, Jia Y, Cao Y, Zhang D (2018) Partitioning and reactivity of iron oxide minerals in aquifer sediments hosting high arsenic groundwater from the Hetao basin, PR China. Appl Geochem 89:190–201

    Article  CAS  Google Scholar 

  • Shrestha RR, Shrestha MP, Upadhyay NP, Pradhan R, Khadka R, Maskey A, Maharjan M, Tuladhar S, Dahal BM, Shrestha K (2003) Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J Environ Sci Health A 38:185–200

    Article  CAS  Google Scholar 

  • Sikdar PK (2018) Groundwater development and management: issues and challenges in South Asia. Springer, Singapore

    Google Scholar 

  • Simpson SL, Batley GE, Chariton AA, Stauber JL, King CK, Chapman JC, Hyne RV, Gale SA, Roach AC, Maher WA (2005) Handbook for sediment quality assessment. Centre for Environmental Contaminants Research Bangor, Bangor

    Google Scholar 

  • Singh A (2004) Arsenic contamination in groundwater of North Eastern India. In: Proceedings of 11th national symposium on hydrology with focal theme on water quality, National Institute of Hydrology, Roorkee, pp 255–262

    Google Scholar 

  • Singh S, Ghosh A, Kumar A, Kislay K, Kumar C, Tiwari R, Parwez R, Kumar N, Imam M (2014) Groundwater arsenic contamination and associated health risks in Bihar. India Int J Environ Res 8:49–60

    CAS  Google Scholar 

  • Singhal VK, Anurag G, Kumar T (2018) Arsenic concentration in drinking and irrigation water of Ambagarh Chowki Block, Rajnandgaon (Chhattisgarh). Int J Chem Stud 6:733–739

    Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  Google Scholar 

  • Sø HU, Postma D, Vi ML, Pham TKT, Kazmierczak J, Dao VN, Pi K, Koch CB, Pham HV, Jakobsen R (2018) Arsenic in Holocene aquifers of the Red River floodplain, Vietnam: effects of sediment-water interactions, sediment burial age and groundwater residence time. Geochim Cosmochim Acta 225:192–209. https://doi.org/10.1016/j.gca.2018.01.010

    Article  CAS  Google Scholar 

  • Su Z, Huang W, Cai WH, Fan J, Huang H, Hu S (2018) Advances in analysis of inorganic arsenic in food. J Food Saf Qual 9:3580–3589

    Google Scholar 

  • Sun G (2004) Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol 198:268–271

    Article  CAS  Google Scholar 

  • Tabassum RA (2017) Arsenic assessment and removal from drinking water of tehsil Hasilpur using agricultural byproducts. Department of Environmental Sciences, Vol. MS. COMSATS Institute of Information Technology, Vehari, pp 1–81

    Google Scholar 

  • Tabassum RA, Shahid M, Dumat C, Niazi NK, Khalid S, Shah NS, Imran M, Khalid S (2018) Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environ Sci Pollut Res Int:1–12. https://doi.org/10.1007/s11356-018-1276-z

    Article  CAS  Google Scholar 

  • Tabassum RA, Shahid M, Niazi N, Dumat C, Zhang Y, Imran M, Bakhat H, Hussain I, Khalid S (2019) Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation. Int J Phytoremediation 21:509–518

    Article  CAS  Google Scholar 

  • Taheri M, Mehrzad J, Mahmudy Gharaie MH, Afshari R, Dadsetan A, Hami S (2016) High soil and groundwater arsenic levels induce high body arsenic loads, health risk and potential anemia for inhabitants of northeastern Iran. Environ Geochem Health 38:469–482. https://doi.org/10.1007/s10653-015-9733-9

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PG, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Thakur JK, Thakur RK, Ramanathan A, Kumar M, Singh SK (2011) Arsenic contamination of groundwater in Nepal—an overview. Water 3:1

    Article  CAS  Google Scholar 

  • Thinh NV, Osanai Y, Adachi T, Thai PK, Nakano N, Ozaki A, Kuwahara Y, Kato R, Makio M, Kurosawa K (2018) Chemical speciation and bioavailability concentration of arsenic and heavy metals in sediment and soil cores in estuarine ecosystem, Vietnam. Microchem J 139:268–277. https://doi.org/10.1016/j.microc.2018.03.005

    Article  CAS  Google Scholar 

  • Tran THM, Nguyen KG (2018) Metal and metalloid concentrations in soil, surface water, and vegetables and the potential ecological and human health risks in the northeastern area of Hanoi, Vietnam. Environ Monit Assess 190:624. https://doi.org/10.1007/s10661-018-6994-7

    Article  CAS  Google Scholar 

  • Uddin MG, Moniruzzaman M, Quader MA, Hasan MA (2018) Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh. Groundw Sustain Dev 7:220–231

    Article  Google Scholar 

  • Upadhyay MK, Shukla A, Yadav P, Srivastava S (2018) A review of arsenic in crops, vegetables, animals and food products. Food Chem 276:608–618

    Article  CAS  Google Scholar 

  • Uqaili A, Mughal A, Maheshwari B (2012) Arsenic contamination in ground water sources of district Matiari, Sindh. Int J Chem Environ Eng 3

    Google Scholar 

  • USEPA (2014) United States Environmental Protection Agency. Toxic and priority pollutants under the clean water act

    Google Scholar 

  • Van Geen A, Zheng Y, Cheng Z, He Y, Dhar R, Garnier J, Rose J, Seddique A, Hoque M, Ahmed K (2006) Impact of irrigating rice paddies with groundwater containing arsenic in Bangladesh. Sci Total Environ 367:769–777

    Article  CAS  Google Scholar 

  • Vijayanand C, Rajaguru P, Kalaiselvi K, Selvam KP, Palanivel M (2008) Assessment of heavy metal contents in the ambient air of the Coimbatore city, Tamilnadu, India. J Hazard Mater 160:548–553. https://doi.org/10.1016/j.jhazmat.2008.03.071

    Article  CAS  Google Scholar 

  • von Brömssen M, Jakariya M, Bhattacharya P, Ahmed KM, Hasan MA, Sracek O, Jonsson L, Lundell L, Jacks G (2007) Targeting low-arsenic aquifers in Matlab Upazila, southeastern Bangladesh. Sci Total Environ 379:121–132

    Article  CAS  Google Scholar 

  • Wang Y, Ma F, Zhang Q, Peng C, Wu B, Li F, Gu Q (2017) An evaluation of different soil washing solutions for remediating arsenic-contaminated soils. Chemosphere 173:368–372

    Article  CAS  Google Scholar 

  • Wang Z, Guo H, Xiu W, Wang J, Shen M (2018) High arsenic groundwater in the Guide basin, northwestern China: distribution and genesis mechanisms. Sci Total Environ 640:194–206

    Article  CAS  Google Scholar 

  • Wen B, Zhou A, Zhou J, Liu C, Huang Y, Li L (2018) Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world’s largest antimony mine, Central China. J Hydrol 557:211–221

    Article  CAS  Google Scholar 

  • Whaley-Martin K, Mailloux B, van Geen A, Bostick B, Ahmed K, Choudhury I, Slater G (2017) Human and livestock waste as a reduced carbon source contributing to the release of arsenic to shallow Bangladesh groundwater. Sci Total Environ 595:63–71

    Article  CAS  Google Scholar 

  • WHO (2000a) World Health Organization Air quality guidelines for Europe. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • WHO (2000b) Air quality guidelines for Europe. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  • Winkel L, Berg M, Amini M, Hug SJ, Johnson CA (2008) Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat Geosci 1:ngeo254

    Article  CAS  Google Scholar 

  • Winkel LHE, Trang PTK, Lan VM, Stengel C, Amini M, Ha NT, Viet PH, Berg M (2011) Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc Natl Acad Sci 108:1246–1251. https://doi.org/10.1073/pnas.1011915108

    Article  Google Scholar 

  • Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36:169–182

    Article  CAS  Google Scholar 

  • World-Bank (2005) Towards a more effective operational response – arsenic contamination of groundwater in South and East Asian Countries (2): Technical Report (English). World Bank, Washington, DC. http://documents.worldbank.org/curated/en/421381468781203094/Technical-Report

    Google Scholar 

  • WWF-Pakistan (2007) Irrigation water quality guidelines for Pakistan. National Surface Water Classification Criteria

    Google Scholar 

  • Xie J-J, Hu X, Shen Y-W, Yuan C-G, Zhang K-G, Zhao X (2017) Bioavailability and speciation of arsenic in urban street dusts from Baoding city, China. Chem Spec Bioavailab 29:135–142

    Article  CAS  Google Scholar 

  • Xie Z, Wang J, Wei X, Li F, Chen M, Wang J, Gao B (2018) Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China. Sci Total Environ 644:382–388

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Mohan D, Shihua Q, Singh S (2014) Assessment of groundwater quality with special reference to arsenic in Nawalparasi district, Nepal using multivariate statistical techniques. Environ Earth Sci 72:259–273. https://doi.org/10.1007/s12665-013-2952-4

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Singh S (2015a) Spatial and temporal variation in arsenic in the groundwater of upstream of Ganges River Basin, Nepal. Environ Earth Sci 73:1265–1279. https://doi.org/10.1007/s12665-014-3480-6

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Singh S (2015b) Reductive dissolution of iron-oxyhydroxides directs groundwater arsenic mobilization in the upstream of Ganges River basin, Nepal. J Geochem Explor 148:150–160

    Article  CAS  Google Scholar 

  • Yañez L, Alfaro J, Mitre GB (2018a) Absorption of arsenic from soil and water by two chard (Beta vulgaris L.) varieties: a potential risk to human health. J Environ Manag 218:23–30

    Article  CAS  Google Scholar 

  • Yañez LM, Alfaro JA, Bovi Mitre G (2018b) Absorption of arsenic from soil and water by two chard (Beta vulgaris L.) varieties: a potential risk to human health. J Environ Manag 218:23–30. https://doi.org/10.1016/j.jenvman.2018.04.048

    Article  CAS  Google Scholar 

  • Yang F, Xie S, Wei C, Liu J, Zhang H, Chen T, Zhang J (2018a) Arsenic characteristics in the terrestrial environment in the vicinity of the Shimen realgar mine, China. Sci Total Environ 626:77–86

    Article  CAS  Google Scholar 

  • Yang Y-P, Zhang H-M, Yuan H-Y, Duan G-L, Jin D-C, Zhao F-J, Zhu Y-G (2018b) Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environ Pollut 236:598–608

    Article  CAS  Google Scholar 

  • Yang Y, Zhang A, Chen Y, Liu J, Cao H (2018c) Impacts of silicon addition on arsenic fractionation in soils and arsenic speciation in Panax notoginseng planted in soils contaminated with high levels of arsenic. Ecotoxicol Environ Saf 162:400–407

    Article  CAS  Google Scholar 

  • Yazdi M, Taheri M, Navi P (2015) Environmental geochemistry and sources of natural arsenic in the Kharaqan hot springs, Qazvin, Iran. Environ Earth Sci 73:5395–5404. https://doi.org/10.1007/s12665-014-3794-4

    Article  CAS  Google Scholar 

  • Ying S, Damashek J, Fendorf S, Francis C (2015) Indigenous arsenic (V)-reducing microbial communities in redox-fluctuating near-surface sediments of the M ekong D elta. Geobiology 13:581–587

    Article  CAS  Google Scholar 

  • Yu L, Wang Y-b, Xin G, SU Y-b, Gang W (2006) Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J Environ Sci 18:1124–1134

    Article  Google Scholar 

  • Zeng Y, Zhou Y, Zhou J, Jia R, Wu J (2018) Distribution and enrichment factors of high-arsenic groundwater in Inland Arid area of PR China: a case study of the Shihezi area, Xinjiang. Expo Health 10:1–13

    Article  CAS  Google Scholar 

  • Zhang J, Ma T, Feng L, Yan Y, Abass OK, Wang Z, Cai H (2017) Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China. Sci Total Environ 584:458–468

    Google Scholar 

  • Zhang Q, Wang S, Nan Z, Li Y, Zang F (2018) Accumulation, fractionation, and risk assessment of mercury and arsenic in the soil-wheat system from the wastewater-irrigated soil in Baiyin, northwest China. Environ Sci Pollut Res 25:14856–14867

    Article  CAS  Google Scholar 

  • Zheng B, Ding Z, Huang R, Zhu J, Yu X, Wang A, Zhou D, Mao D, Su H (1999) Issues of health and disease relating to coal use in southwestern China. Int J Coal Geol 40:119–132

    Article  CAS  Google Scholar 

  • Zhou Y, Zeng Y, Zhou J, Guo H, Li Q, Jia R, Chen Y, Zhao J (2017) Distribution of groundwater arsenic in Xinjiang, P.R. China. Appl Geochem 77:116–125. https://doi.org/10.1016/j.apgeochem.2016.09.005

    Article  CAS  Google Scholar 

  • Zhou T, Wu L, Luo Y, Christie P (2018a) Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils. Environ Pollut 232:514–522

    Article  CAS  Google Scholar 

  • Zhou Y, Niu L, Liu K, Yin S, Liu W (2018b) Arsenic in agricultural soils across China: distribution pattern, accumulation trend, influencing factors, and risk assessment. Sci Total Environ 616:156–163

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natasha et al. (2020). Arsenic Environmental Contamination Status in South Asia. In: Srivastava, S. (eds) Arsenic in Drinking Water and Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-8587-2_2

Download citation

Publish with us

Policies and ethics