Skip to main content

Arsenic in Mushrooms, Fish, and Animal Products

  • Chapter
  • First Online:
Arsenic in Drinking Water and Food

Abstract

Arsenic is a ubiquitous metalloid that occurs in all kinds of soils. The International Agency for Research on Cancer (IARC) has documented As and As complexes as group 1 carcinogens. Millions of people around the world are suffering from the toxic effects of arsenicals in many countries because of natural groundwater contamination as well as arsenic in food. This has stimulated a lot of efforts from researchers, NGOs, and government to understand the extent of As contamination in different types of food items. The continuous research is revealing the story of arsenic contamination, infiltration, and its effect on several crops, food, mushrooms, fruits, vegetables, sea animals, and fish and animal products. The commercial foodstuffs formulated from As-tainted raw material were also contaminated by As. Thus, the hazard of As exposure becomes relevant not only to people living in As-contaminated regions but also to other parts of the world. This chapter deals with As contamination issue in fish, mushrooms, and other animal products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (2017) Uptake and accumulation of metals in bacteria and fungi. In: Biogeochemistry of trace metals. CRC Press, Boca Raton, pp 289–310

    Chapter  Google Scholar 

  • Alimoghaddam K (2014) A review of arsenic trioxide and acute promyelocytic leukemia. Int J Hematol-Oncol Stem Cell Res 8(3):44

    Google Scholar 

  • Awasthi G, Kumar A, Awasthi KK, Singh AP, Srivastva S, Vajpayee P et al (2017) Green synthesis of nanoparticles: an emerging Phytotechnology. In: Green technologies and environmental sustainability. Springer, Cham, pp 339–363

    Chapter  Google Scholar 

  • Barh A, Upadhyay RC, Kamal S, Annepu SK, Sharma VP, Shirur M, Banyal S (2018) Mushroom crop in agricultural waste cleanup. In: Microbial biotechnology in environmental monitoring and cleanup. IGI Global, pp 252–266

    Google Scholar 

  • Baris D, Waddell R, Beane Freeman LE, Schwenn M, Colt JS, Ayotte JD, Ward MH, Nuckols J, Schned A, Jackson B, Clerkin C (2016) Elevated bladder cancer in Northern New England: the role of drinking water and arsenic. JNCI: J Natl Cancer Inst 108(9)

    Google Scholar 

  • Bempah CK (2014) Arsenic contamination of groundwater in south-western part of Ashanti Region of Ghana. Doctoral dissertation, BTU Cottbus-Senftenberg

    Google Scholar 

  • Bencko V, Foong FYL (2017) The history of arsenical pesticides and health risks related to the use of agent blue. Ann Agric Environ Med 24(2):312–316

    Article  CAS  Google Scholar 

  • Braeuer S, Borovička J, Goessler W (2018) A unique arsenic speciation profile in Elaphomyces spp. (“deer truffles”)—trimethylarsine oxide and methylarsonous acid as significant arsenic compounds. Anal Bioanal Chem 410(9):2283–2290

    Article  CAS  Google Scholar 

  • Byrne AR, Šlejkovec Z, Stijve T, Fay L, Goessler W, Gailer J, Lrgolic KJ (1995) Arsenobetaine and other arsenic species in mushrooms. Appl Organomet Chem 9(4):305–313

    Article  CAS  Google Scholar 

  • Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP (2015) Arsenic and environmental health: state of the science and future research opportunities. Environ Health Perspect 124(7):890–899

    Article  Google Scholar 

  • Caumette G, Koch I, Reimer KJ (2012) Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J Environ Monit 14(11):2841–2853

    Article  CAS  Google Scholar 

  • Chen S, Yuan B, Xu J, Chen G, Hu Q, Zhao L (2018) Simultaneous separation and determination of six arsenic species in Shiitake (Lentinus edodes) mushrooms: method development and applications. Food Chem 262:134–141

    Article  CAS  Google Scholar 

  • Chiocchetti GM, Vélez D, Devesa V (2018) Effect of subchronic exposure to inorganic arsenic on the structure and function of the intestinal epithelium. Toxicol Lett 286:80–88

    Article  CAS  Google Scholar 

  • Datta BK, Bhar MK, Patra PH, Majumdar D, Dey RR, Sarkar S, Mandal TK, Chakraborty AK (2012) Effect of environmental exposure of arsenic on cattle and poultry in Nadia district, West Bengal, India. Toxicol Int 19(1):59

    Article  Google Scholar 

  • Davis MA, Higgins J, Li Z, Gilbert-Diamond D, Baker ER, Das A, Karagas MR (2015) Preliminary analysis of in utero low-level arsenic exposure and fetal growth using biometric measurements extracted from fetal ultrasound reports. Environ Health 14(1):12

    Article  Google Scholar 

  • Davis HT, Aelion CM, Liu J, Burch JB, Cai B, Lawson AB, McDermott S (2016) Potential sources and racial disparities in the residential distribution of soil arsenic and lead among pregnant women. Sci Total Environ 551:622–630

    Article  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251

    Article  CAS  Google Scholar 

  • Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97(2):477–501

    Article  CAS  Google Scholar 

  • Falandysz J, Drewnowska M (2015) Macro and trace elements in common Chanterelle (Cantharellus cibarius) mushroom from the European background areas in Poland: composition, accumulation, dietary exposure and data review for species. J Environ Sci Health B 50(5):374–387

    Article  CAS  Google Scholar 

  • FDA (Food and Drug Administration) Final Report on Study 275.30 (2011) Provide data on various arsenic species present in broilers treated with Roxarsone: comparison with untreated birds

    Google Scholar 

  • Gadd GM (2016) 5 fungi and industrial pollutants. In: Environmental and microbial relationships. Springer, Cham, pp 99–125

    Chapter  Google Scholar 

  • Ghosh A, Awal MA, Majumder S, Mostofa M, Khair A, Islam MZ, Rao DR (2012) Arsenic in eggs and excreta of laying hens in Bangladesh: a preliminary study. J Health Popul Nutr 30(4):383

    Google Scholar 

  • Giri A, Bharti VK, Angmo K, Kalia S, Vivek P, Kumar B (2016) Int J Curr Res Biosci Plant Biol 3(12):105–114

    Article  Google Scholar 

  • Guo Q, Planer-Friedrich B, Liu M, Li J, Zhou C, Wang Y (2017) Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region, China. Chem Geol 453:12–20

    Article  CAS  Google Scholar 

  • Hong YS, Song KH, Chung JY (2014) Health effects of chronic arsenic exposure. J Prev Med Public Health 47(5):245

    Google Scholar 

  • Hossain M, Bhattacharya P, Jacks G, von Brömssen M, Ahmed KM, Hasan MA, Frape SK (2017) Sustainable arsenic mitigation–from field trials to implementation for control of arsenic in drinking water supplies in Bangladesh. In: Best practice guide on the control of arsenic in drinking water. IWA Publishing, London, pp 99–116

    Google Scholar 

  • Huang Q, Jia Y, Wan Y, Li H, Jiang R (2015) Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J Food Sci 80(7):H1612–H1618

    Article  CAS  Google Scholar 

  • Hughes MF, Kenyon EM, Edwards BC, Mitchell CT, Del Razo LM, Thomas DJ (2003) Accumulation and metabolism of arsenic in mice after repeated oral administration of arsenate. Toxicol Appl Pharmacol 191(3):202–210

    Article  CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123(2):305–332

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2012) 100, Part C

    Google Scholar 

  • Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL (2012) Arsenic, organic foods, and brown rice syrup. Environ Health Perspect 120(5):623–626

    Article  CAS  Google Scholar 

  • Jackson BP, Punshon T (2015) Recent advances in the measurement of arsenic, cadmium, and mercury in rice and other foods. Curr Environ Health Rep 2(1):15–24

    Article  CAS  Google Scholar 

  • Jacob T (2016) Poisons in our food. Publications Division Ministry of Information & Broadcasting, New Delhi

    Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  Google Scholar 

  • Kim S, Ryu DY (2016) A short review of arsenic-induced toxicity. J Prev Vet Med 40(1):46–52

    Article  Google Scholar 

  • Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Niksic M, Vrvic M, Van Griensven L (2015) Antioxidants of edible mushrooms. Molecules 20(10):19489–19525

    Article  CAS  Google Scholar 

  • Krishnakumar PK, Qurban MA, Stiboller M, Nachman KE, Joydas TV, Manikandan KP, Mushir SA, Francesconi KA (2016) Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment. Sci Total Environ 566:1235–1244

    Article  Google Scholar 

  • Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J (2018) Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Sci Total Environ 642:485–496

    Article  CAS  Google Scholar 

  • Lasky T, Sun W, Kadry A, Hoffman MK (2004) Mean total arsenic concentrations in chicken 1989–2000 and estimated exposures for consumers of chicken. Environ Health Perspect 112(1):18

    Article  CAS  Google Scholar 

  • Lewchalermvong K, Rangkadilok N, Nookabkaew S, Suriyo T, Satayavivad J (2018) Arsenic speciation and accumulation in selected organs after oral administration of rice extracts in Wistar Rats. J Agric Food Chem 66(12):3199–3209

    Article  CAS  Google Scholar 

  • Lewin JM, Carucci JA (2015) Advances in the management of basal cell carcinoma. F1000prime reports 7:53

    Article  Google Scholar 

  • Lischka S, Arroyo-Abad U, Mattusch J, Kühn A, Piechotta C (2013) The high diversity of arsenolipids in herring fillet (Clupea harengus). Talanta 110:144–152

    Article  CAS  Google Scholar 

  • Mahmood Q, Rashid A, Ahmad SS, Azim MR, Bilal M (2012) Current status of toxic metals addition to environment and its consequences. In: The plant family Brassicaceae. Springer, Dordrecht, pp 35–69

    Chapter  Google Scholar 

  • Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL (2011) Arsenic exposure and the induction of human cancers. J Toxicol 2011:431287

    Article  Google Scholar 

  • Mazumder DNG, Ghosh A, Majumdar KK, Ghosh N, Saha C, Mazumder RNG (2010) Arsenic contamination of ground water and its health impact on population of district of Nadia, West Bengal, India. Indian J Community Med: Off Publ Indian Assoc Prev Soc Med 35(2):331

    Article  Google Scholar 

  • McArthur JM (2019) Arsenic in groundwater. In: Groundwater development and management. Springer, Cham, pp 279–308

    Chapter  Google Scholar 

  • Melgar MJ, Alonso J, García MA (2014) Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain). Food Chem Toxicol 73:44–50

    Article  CAS  Google Scholar 

  • Melgar MJ, Alonso J, García MA (2016) Cadmium in edible mushrooms from NW Spain: bioconcentration factors and consumer health implications. Food Chem Toxicol 88:13–20

    Article  CAS  Google Scholar 

  • Meng X, Liu B, Xi C, Luo X, Yuan X, Wang X, Zhu W, Wang H, Cui Z (2018) Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour Technol 251:22–30

    Article  CAS  Google Scholar 

  • Meyer S, Raber G, Ebert F, Taleshi MS, Francesconi KA, Schwerdtle T (2015) Arsenic-containing hydrocarbons and arsenic-containing fatty acids: transfer across and presystemic metabolism in the Caco-2 intestinal barrier model. Mol Nutr Food Res 59(10):2044–2056

    Article  CAS  Google Scholar 

  • Minatel BC, Sage AP, Anderson C, Hubaux R, Marshall EA, Lam WL, Martinez VD (2018) Environmental arsenic exposure: from genetic susceptibility to pathogenesis. Environ Int 112:183–197

    Article  CAS  Google Scholar 

  • Mleczek M, Niedzielski P, Siwulski M, Rzymski P, Gąsecka M, Goliński P, Kozak L, Kozubik T (2016) Importance of low substrate arsenic content in mushroom cultivation and safety of final food product. Eur Food Res Technol 242(3):355–362

    Article  CAS  Google Scholar 

  • Molina-Villalba I, Lacasaña M, Rodríguez-Barranco M, Hernández AF, Gonzalez-Alzaga B, Aguilar-Garduño C, Gil F (2015) Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere 124:83–91

    Article  CAS  Google Scholar 

  • Musil S, Pétursdóttir ÁH, Raab A, Gunnlaugsdóttir H, Krupp E, Feldmann J (2014) Speciation without chromatography using selective hydride generation: inorganic arsenic in rice and samples of marine origin. Anal Chem 86(2):993–999

    Article  CAS  Google Scholar 

  • Nachman KE, Baron PA, Raber G, Francesconi KA, Navas-Acien A, Love DC (2013) Roxarsone, inorganic arsenic, and other arsenic species in chicken: a US-based market basket sample. Environ Health Perspect 121(7):818

    Article  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302

    Article  CAS  Google Scholar 

  • Nearing MM, Koch I, Reimer KJ (2014) Arsenic speciation in edible mushrooms. Environ Sci Technol 48(24):14203–14210

    Article  CAS  Google Scholar 

  • Nicomel N, Leus K, Folens K, Van Der Voort P, Du Laing G (2015) Technologies for arsenic removal from water: current status and future perspectives. Int J Environ Res Public Health 13(1):62

    Article  Google Scholar 

  • Podgorski JE, Eqani SAMAS, Khanam T, Ullah R, Shen H, Berg M (2017) Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci Adv 3(8):e1700935

    Article  Google Scholar 

  • Rahi DK, Malik D (2016) Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. J Mycol 2016:7654123

    Google Scholar 

  • Rashid MH, Rahman MM, Correll R, Naidu R (2018) Arsenic and other elemental concentrations in mushrooms from Bangladesh: health risks. Int J Environ Res Public Health 15(5):919. https://doi.org/10.3390/ijerph15050919

    Article  CAS  Google Scholar 

  • Roy D, Kumar Das T, Vaswani S (2013) Arsenic: it’s extent of pollution and toxicosis: an animal perspective. Vet World 6(1):53

    Article  Google Scholar 

  • Rzymski P, Mleczek M, Siwulski M, Gąsecka M, Niedzielski P (2016) The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. J Food Compos Anal 51:55–60

    Article  CAS  Google Scholar 

  • Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation – a critical review. Chemosphere 158:37–49

    Article  CAS  Google Scholar 

  • Seyfferth AL, McClatchy C, Paukett M (2016) Arsenic, lead, and cadmium in US mushrooms and substrate in relation to dietary exposure. Environ Sci Technol 50(17):9661–9670

    Article  CAS  Google Scholar 

  • Shukla A, Srivastava S (2017) Emerging aspects of bioremediation of arsenic. In: Green technologies and environmental sustainability. Springer, Cham, pp 395–407

    Chapter  Google Scholar 

  • Sinha B, Bhattacharyya K (2015) Arsenic toxicity in rice with special reference to speciation in Indian grain and its implication on human health. J Sci Food Agric 95(7):1435–1444

    Article  CAS  Google Scholar 

  • Sivaperumal P, Sankar TV, Nair PV (2007) Heavy metal concentrations in fish, shellfish and fish products from internal markets of India vis-a-vis international standards. Food Chem 102(3):612–620

    Article  CAS  Google Scholar 

  • Šlejkovec Z, Stajnko A, Falnoga I, Lipej L, Mazej D, Horvat M, Faganeli J (2014) Bioaccumulation of arsenic species in rays from the northern Adriatic Sea. Int J Mol Sci 15(12):22073–22091

    Article  Google Scholar 

  • Smith M, Shnyreva A, Wood DA, Thurston CF (1998) Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology 144(4):1063–1069

    Article  CAS  Google Scholar 

  • States JC, Barchowsky A, Cartwright IL, Reichard JF, Futscher BW, Lantz RC (2011) Arsenic toxicology: translating between experimental models and human pathology. Environ Health Perspect 119(10):1356–1363

    Article  CAS  Google Scholar 

  • Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA (2017) Human exposure to organic arsenic species from seafood. Sci Total Environ 580:266–282

    Article  CAS  Google Scholar 

  • Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol 19:39–46

    Article  Google Scholar 

  • Tyson J (2013) The determination of arsenic compounds: a critical review. ISRN Anal Chem 2013:835371

    Article  Google Scholar 

  • Vaishaly AG, Mathew BB, Krishnamurthy NB (2015) Health effects caused by metal contaminated ground water. Int J Adv Sci Res 1(02):60–64

    Article  Google Scholar 

  • Walker GM, White NA (2017) Introduction to fungal physiology. In: Fungi: biology and applications. Wiley, Hoboken, pp 1–35

    Google Scholar 

  • Wang XM, Zhang J, Wu LH, Zhao YL, Li T, Li JQ, Wang YZ, Liu HG (2014) A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chem 151:279–285

    Article  CAS  Google Scholar 

  • Zavala YJ, Duxbury JM (2008) Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol 42(10):3856–3860

    Article  CAS  Google Scholar 

  • Zhang J, Li T, Yang YL, Liu HG, Wang YZ (2015) Arsenic concentrations and associated health risks in Laccaria mushrooms from Yunnan (SW China). Biol Trace Elem Res 164(2):261–266

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors, G.A., is thankful to DST-SERB, New Delhi, India, for the award of National Post Doctoral Fellowship file number PDF/2015/000578.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awasthi, G., Singh, T., Awasthi, A., Awasthi, K.K. (2020). Arsenic in Mushrooms, Fish, and Animal Products. In: Srivastava, S. (eds) Arsenic in Drinking Water and Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-8587-2_10

Download citation

Publish with us

Policies and ethics