Skip to main content

Dynamical Mechanical Thermal Analysis of Shape-Memory Polymers

  • Chapter
  • First Online:
  • 1360 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

This chapter is dedicated to the dynamical mechanical thermal analysis of shape-memory polymers. Temperature obviously plays a major role in the mechanical properties of these materials; hence, the understanding of the physical phenomena driving the shape-memory effect is of first importance for the design of practical applications in which shape-memory polymers are used. The shape-memory effect being closely related to the viscoelastic behavior of the polymer, it is important to properly describe it with appropriate tools. The objective of this chapter is to describe characterization methods, models, and parameters identification techniques that can be easily used for the description of the thermomechanical behavior of SMPs. The associated models can easily be implemented in finite element codes for time- or frequency-domain simulations. The experimental results and all numerical values of the models are provided for three shape-memory polymers: the tBA/PEGDMA and a vitrimer, which can easily be manufactured according to the data provided in open literature, and a shape-memory polymer filament for 3D printing, which is available on the shelf.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barwood MJ, Breen C, Clegg F, Hammond CL (2014) The effect of organoclay addition on the properties of an acrylate based, thermally activated shape memory polymer. Appl Clay Sci 102:41–50

    Article  Google Scholar 

  2. Tsai Y, Tai CH, Tsai SJ, Tsai FJ (2008) Shape memory effects of poly (ethylene terephthalate-co-ethylene succinate) random copolymers. Eur Polym J 44(2):550–554

    Article  MathSciNet  Google Scholar 

  3. Biju R, Nair CR (2013) Synthesis and characterization of shape memory epoxy-anhydride system. J Polym Res 20(2):1–11

    Article  Google Scholar 

  4. Butaud P, Ouisse M, Placet V, Renaud F, Travaillot T, Maynadier A, Chevallier G, Amiot F, Delobelle P, Foltête E, Rogueda-Berriet C (2018) Identification of the viscoelastic properties of the tBA/PEGDMA polymer from multi-loading modes conducted over a wide frequency–temperature scale range. Polym Test. https://doi.org/10.1016/j.polymertesting.2018.05.030

    Article  Google Scholar 

  5. Ortega AM, Kasprzak SE, Yakacki CM, Diani J, Greenberg AR, Gall K (2008) Structure-property relationships in photopolymerizable polymer networks: Effect of composition on the crosslinked structure and resulting thermomechanical properties of a (meth) acrylate-based system. J Appl Polym Sci 110(3):1559–1572

    Article  Google Scholar 

  6. Butaud P, Placet V, Ouisse M, Foltete E, Gabrion X (2015) Investigations on the frequency and temperature effects on mechanical properties of a shape memory polymer (veriflex). Mech Mater 87:50–60. https://doi.org/10.1016/j.mechmat.2015.04.002

    Article  Google Scholar 

  7. Ellson G, Di Prima M, Ware T, Tang X, Voit W (2015) Tunable thiol–epoxy shape memory polymer foams. Smart Mater Struct 24(5): 055–001

    Article  Google Scholar 

  8. Tandon G, Goecke K, Cable K, Baur J (2009) Durability assessment of styrene-and epoxy-based shape-memory polymer resins. J Intell Mater Syst Struct 20(17):2127–2143

    Article  Google Scholar 

  9. Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50(8):1852–1856. https://doi.org/10.1016/j.polymer.2009.02.035

    Article  Google Scholar 

  10. Chen YC, Lagoudas DC (2008) A constitutive theory for shape memory polymers. part i: large deformations. J Mech Phys Solids 56(5):1752–1765

    Article  MathSciNet  MATH  Google Scholar 

  11. Diani J, Gilormini P, Frédy C, Rousseau I (2012) Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int J Solids Struct 49(5):793–799

    Article  Google Scholar 

  12. Fang C, Leng J, Sun H, Gu J (2018) A multi-branch thermoviscoelastic model based on fractional derivatives for free recovery behaviors of shape memory polymers. Mech Mater 120:34–42

    Article  Google Scholar 

  13. Li Y, Liu Z (2018) A novel constitutive model of shape memory polymers combining phase transition and viscoelasticity. Polymer 143:298–308

    Article  Google Scholar 

  14. Lin J, Chen L (1999) Shape-memorized crosslinked ester-type polyurethane and its mechanical viscoelastic model. J Appl Polym Sci 73(7):1305–1319

    Article  Google Scholar 

  15. Zeng H, Leng J, Gu J, Yin C, Sun H (2018) Modeling the strain rate-, hold time- and temperature-dependent cyclic behaviors of amorphous shape memory polymers. Smart Mater Struct

    Google Scholar 

  16. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49:79–120

    Article  Google Scholar 

  17. Chun BC, Cha SH, Chung YC, Cho JW (2002) Enhanced dynamic mechanical and shape-memory properties of a poly (ethylene terephthalate)-poly (ethylene glycol) copolymer crosslinked by maleic anhydride. J Appl Polym Sci 83(1):27–37

    Article  Google Scholar 

  18. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  19. Rao MD (2003) Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J Sound Vib 262(3):457–474

    Article  Google Scholar 

  20. Butaud P, Foltête E, Ouisse M (2016) Sandwich structures with tunable damping properties: on the use of shape memory polymer as viscoelastic core. Compos Struct 153:401–408. https://doi.org/10.1016/j.compstruct.2016.06.040

    Article  Google Scholar 

  21. Araujo A, Soares CM, Soares CM, Herskovits J (2010) Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates. Compos Struct 92(9):2321–2327

    Article  Google Scholar 

  22. Grootenhuis P (1970) The control of vibrations with viscoelastic materials. J Sound Vib 11(4):421–433

    Article  Google Scholar 

  23. Berthelot JM, Assarar M, Sefrani Y, Mahi AE (2008) Damping analysis of composite materials and structures. Compos Struct 85(3):189–204

    Article  Google Scholar 

  24. Ege K, Roozen N, Leclere Q, Rinaldi RG (2018) Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment. J Sound Vib 426:129–149

    Article  Google Scholar 

  25. Li J, Narita Y (2012) The effect of aspect ratios and edge conditions on the optimal damping design of thin soft core sandwich plates and beams. J. Vib Control 1077546312463756

    Google Scholar 

  26. Lifshitz J, Leibowitz M (1987) Optimal sandwich beam design for maximum viscoelastic damping. Int J Solids Struct 23(7):1027–1034

    Article  MATH  Google Scholar 

  27. Diani J, Gilormini P, Agbobada G (2014) Experimental study and numerical simulation of the vertical bounce of a polymer ball over a wide temperature range. J Mater Sci 49(5):2154–2163

    Article  Google Scholar 

  28. Hu J, Chen W, Fan P, Gao J, Fang G, Cao Z, Peng F (2017) Epoxy shape memory polymer (smp): Material preparation, uniaxial tensile tests and dynamic mechanical analysis. Polym Test 62:335–341

    Article  Google Scholar 

  29. Stark W, Jaunich M, McHugh J (2015) Dynamic mechanical analysis (dma) of epoxy carbon-fibre prepregs partially cured in a discontinued autoclave analogue process. Polym Test 41:140–148

    Article  Google Scholar 

  30. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    Article  Google Scholar 

  31. Seitz J, Balazs C (1968) Application of time-temperature superposition principle to long term engineering properties of plastic materials. Polym Eng Sci 8(2):151–160

    Article  Google Scholar 

  32. Hutcheson S, McKenna G (2008) In: 6th International Conference on mechanics of time dependent materials conference. Monterey, California

    Google Scholar 

  33. Diani J, Gilormini P (2017) On necessary precautions when measuring solid polymer linear viscoelasticity with dynamic analysis in torsion. Polym Test 63:275–280

    Article  Google Scholar 

  34. Billon K, Ouisse M, Sadoulet-Reboul E, Collet M, Butaud P, Chevallier G, Khelif A (2019) Design and experimental validation of a temperature-driven adaptive phononic crystal slab. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aaf670

    Article  Google Scholar 

  35. Srivastava V, Chester SA, Anand L (2010) Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations. J. Mech. Phys. Solids 58(8):1100–1124

    Article  MATH  Google Scholar 

  36. Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28(14):2255–2263

    Article  Google Scholar 

  37. Leibler L, Montarnal D, Tournilhac FG, Capelot M (2016) Thermoset/supramolecular hybrid composites and resins that can be hot-formed and recycled. US Patent 9,359,467

    Google Scholar 

  38. Montarnal D, Capelot M, Tournilhac F, Leibler L (2011) Silica-like malleable materials from permanent organic networks. Science 334(6058):965–968

    Article  Google Scholar 

  39. Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento (1971–1977) 1(2):161–198

    Article  Google Scholar 

  40. Lakes RS (1998) Viscoelastic solids, vol 9. CRC Press, New York

    Google Scholar 

  41. Lesieutre G, Bianchini E (1995) Time domain modeling of linear viscoelasticity using anelastic displacement fields. J Vib Acoust 117(4):424–430

    Article  Google Scholar 

  42. Salençon, J (2009) Viscoélasticité pour le calcul des structures. Editions Ecole Polytechnique

    Google Scholar 

  43. Chevalier Y, Tuong JV (2010) Mechanics of viscoelastic materials and wave dispersion. Iste

    Google Scholar 

  44. Gaul L, Klein P, Kemple S (1991) Damping description involving fractional operators. Mech Syst Signal Process 5(2):81–88

    Article  Google Scholar 

  45. Makris N (1997) Causal hysteretic element. J Eng Mech 123(11):1209–1214

    Article  Google Scholar 

  46. Simo JC, Hughes TJ (2006) Computational inelasticity, vol 7. Springer Science and Business Media, Berlin

    Google Scholar 

  47. Dealy J, Plazek D (2009) Time-temperature superposition-a users guide. Rheol Bull 78(2):16–31

    Google Scholar 

  48. Rouleau L (2013) Modélisation vibro-acoustique de structures sandwich munies de matériaux visco-élastiques. Ph.D. thesis, Paris, CNAM

    Google Scholar 

  49. Seitz J, Balazs C (1968) Application of time-temperature superposition prin- ciple to long term engineering properties of plastic materials. Polym Eng Sci 8(2):151–160

    Article  Google Scholar 

  50. Dion J, Vialard S (1997) Identification or rubber shock absorber mounts. Mécanique industrielle et matériaux 50(5):232–237

    Google Scholar 

  51. Renaud F, Dion JL, Chevallier G, Tawfiq I, Lemaire R (2011) A new identification method of viscoelastic behavior: Application to the generalized maxwell model. Mech Syst Signal Process 25(3):991–1010

    Article  Google Scholar 

  52. Jaboviste K, Sadoulet-Reboul E, Peyret N, Arnould C, Collard E, Chevallier G (2019) On the compromise between performance and robustness for viscoelastic damped structures. Mech Syst Signal Process 119:65–80

    Article  Google Scholar 

  53. Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185

    Article  MathSciNet  MATH  Google Scholar 

  54. Nair DP, Cramer NB, Scott TF, Bowman CN, Shandas R (2010) Photopolymerized thiol-ene systems as shape memory polymers. Polymer 51(19):4383–4389

    Article  Google Scholar 

  55. Wornyo E, Gall K, Yang F, King W (2007) Nanoindentation of shape memory polymer networks. Polymer 48(11):3213–3225

    Article  Google Scholar 

  56. Olard F, Di Benedetto H (2003) General 2s2p 1 d model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Mater Pavement Des 4(2):185–224

    Google Scholar 

Download references

Acknowledgements

This work has been performed in collaboration with EUR EIPHI Graduate School (project ANR 17-EURE-0002). The authors would like to thank people who contributed to the experimental parts of this work: Renan Ferreira, Xavier Gabrion, Thomas Jeannin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morvan Ouisse .

Editor information

Editors and Affiliations

Appendices

Appendix - Numerical Values of the GMM for the Master Curve of tBA/PEGDMA

Cell Id (i)

\(\infty \)

1

2

3

4

5

\(\tau _i\) [s\(^{-1}\)]

0

\(6.3559\times 10^{-8}\)

\(1.0593\times 10^{-7}\)

\(3.1780\times 10^{-7}\)

\(7.2089\times 10^{-7}\)

\(1.6353\times 10^{-6}\)

\(E_i\) [MPa]

0.97769

47.494

12.824

36.857

25.597

38.480

6

7

8

9

10

11

12

\(3.7094\times 10^{-6}\)

\(8.4144\times 10^{-6}\)

\(1.9087\times 10^{-5}\)

\(4.3297\times 10^{-5}\)

\(9.8215\times 10^{-5}\)

0.00022279

0.00050538

35.509

44.348

45.331

51.465

54.857

60.001

63.611

13

14

15

16

17

18

19

0.0011464

0.0026005

0.0058989

0.013381

0.030354

0.068854

0.15619

68.674

72.789

77.466

82.927

90.182

100.64

117.60

20

21

22

23

24

25

26

0.35430

0.80368

1.8231

4.1354

9.3808

21.279

48.270

147.41

195.49

236.00

181.53

88.156

38.936

17.638

27

28

29

30

31

32

33

109.50

248.38

563.42

1278.1

3149.0

7758.6

19116

8.4675

4.2157

2.0917

1.1444

0.59268

0.28032

0.13926

34

35

36

37

38

39

40

47100

\(1.1605\times 10^{5}\)

\(2.8593\times 10^{5}\)

\(7.0448\times 10^{5}\)

\(1.7357\times 10^{6}\)

\(4.2766\times 10^{6}\)

\(1.2830\times 10^{7}\)

0.067803

0.032689

0.017485

0.0050210

0.0028528

0.0049602

0.013080

41

      

\(2.1383\times 10^{7}\)

      

0.021141

      

Appendix - Numerical Values of the GMM for the Master Curve of SMP Filament

Cell Id (i)

\(\infty \)

1

2

3

4

5

\(\tau _i\) [s\(^{-1}\)]

0

\(1.3656\times 10^{-10}\)

\(6.8280\times 10^{-10}\)

\(1.5076\times 10^{-9}\)

\(3.3288\times 10^{-9}\)

\(7.3499\times 10^{-9}\)

\(E_i\) [MPa]

0.00041175

122.25

27.421

46.242

31.513

57.238

6

7

8

9

10

11

12

\(1.6228\times 10^{-8}\)

\(3.5832\times 10^{-8}\)

\(7.9117\times 10^{-8}\)

\(1.7469\times 10^{-7}\)

\(3.8571\times 10^{-7}\)

\(8.5164\times 10^{-7}\)

\(1.8804\times 10^{-6}\)

46.875

62.971

58.318

66.349

68.579

73.597

81.764

13

14

15

16

17

18

19

\(4.1519\times 10^{-6}\)

\(9.1673\times 10^{-6}\)

\(2.0241\times 10^{-5}\)

\(4.4693\times 10^{-5}\)

\(9.8681\times 10^{-5}\)

0.00021789

0.00048109

91.310

100.64

121.28

127.62

153.02

151.15

152.60

20

21

22

23

24

25

26

0.0010622

0.0023454

0.0051786

0.011434

0.025247

0.055744

0.12308

123.22

90.911

58.486

35.484

20.420

11.493

6.0686

27

28

29

30

31

32

33

0.27176

0.60005

1.3249

2.9254

6.4592

14.262

31.490

3.2138

1.3316

0.87233

0.46338

0.63790

0.32339

0.65854

34

35

36

37

38

39

40

69.529

153.52

338.97

748.43

1652.5

3648.8

18244

0.24972

0.86167

0.87394

0.00047364

2.6729

0.66321

0.00059484

Appendix - Numerical Values of the GMM for the Master Curve of Vitrimer

Cell Id (i)

\(\infty \)

1

2

3

4

5

\(\tau _i\) [s\(^{-1}\)]

0

0.012689

0.063445

0.14123

0.31438

0.69983

\(E_i\) [MPa]

10.806

1517.2

9.9502

790.00

0.049548

500.70

6

7

8

9

10

11

12

1.5579

3.4678

7.7195

17.184

38.252

85.151

189.55

203.33

345.30

251.11

289.77

249.72

254.53

229.18

13

14

15

16

17

18

19

421.94

939.26

2090.8

4654.3

10361.

23063.

51339.

217.72

193.13

171.00

142.87

115.73

88.780

65.993

20

21

22

23

24

25

26

\(1.1428\times 10^{5}\)

\(2.5440\times 10^{5}\)

\(5.6630\times 10^{5}\)

\(1.2606\times 10^{6}\)

\(2.8062\times 10^{6}\)

\(6.2466\times 10^{6}\)

\(1.3905\times 10^{7}\)

47.155

33.193

22.616

15.297

9.7769

6.3134

3.8148

27

28

29

30

31

32

33

\(3.0954\times 10^{7}\)

\(6.8904\times 10^{7}\)

\(1.5338\times 10^{8}\)

\(3.4144\times 10^{8}\)

\(7.6005\times 10^{8}\)

\(1.6919\times 10^{9}\)

\(3.7662\times 10^{9}\)

2.6396

1.6391

1.3584

0.83093

0.87719

0.46957

0.69845

34

35

36

37

38

  

\(8.3838\times 10^{9}\)

\(1.8663\times 10^{10}\)

\(4.1544\times 10^{10}\)

\(9.2478\times 10^{10}\)

\(4.6239\times 10^{11}\)

  

0.41526

0.00059210

0.0012208

0.0050371

14.355

  

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butaud, P., Ouisse, M., Jaboviste, K., Placet, V., Foltête, E. (2020). Dynamical Mechanical Thermal Analysis of Shape-Memory Polymers. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics