Skip to main content

Rheology of Shape-Memory Polymers, Polymer Blends, and Composites

  • Chapter
  • First Online:
Book cover Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

Shape-memory polymers (SMPs) have attracted considerable attention in recent decades due to the characteristics of switching from permanent shape to temporary shape and vice versa by the application of an external stimulus. The significance and diverse applications of SMPs in the scientific and commercial scope generate researchers to have keen knowledge in the manufacturing of new shape-memory polymers and their blends and composites with improved thermomechanical and other desired properties. This chapter will provide a generalized view on the rheology of SMPs and their blends and composites that would give a holistic picture of this promising area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Edit 41(12):2034–2057

    Article  Google Scholar 

  2. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  3. Safranski DL, Griffis JC (2017) Shape-memory polymer device design. Elsevier

    Google Scholar 

  4. Parameswaranpillai J, Ramanan SP, George JJ, Jose S, Zachariah AK, Siengchin S, Yorseng K, Janke A, Pionteck J (2018) PEG-ran-PPG modified epoxy thermosets: a simple approach to develop tough shape memory polymers. Ind Eng Chem Res 57:3583–3590

    Article  Google Scholar 

  5. García-Huete N, Post W, Laza JM, Vilas JL, León LM, García SJ (2018) Effect of the blend ratio on the shape memory and self-healing behaviour of ionomer-polycyclooctene crosslinked polymer blends. Eur Polym J 98:154–161

    Article  Google Scholar 

  6. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  Google Scholar 

  7. Berg GJ, McBride MK, Wang C, Bowman CN (2014) New directions in the chemistry of shape memory polymers. Polymer 55(23):5849–5872

    Article  Google Scholar 

  8. Butaud P, Placet V, Klesa J, Ouisse M, Foltête E, Gabrion X (2015) Investigations on the frequency and temperature effects on mechanical properties of a shape memory polymer (veriflex). Mech Mater 87:50–60

    Article  Google Scholar 

  9. Pilate F, Toncheva A, Dubois P, Raquez JM (2016) Shape-memory polymers for multiple applications in the materials world. Eur Polym J 80:268–294

    Article  Google Scholar 

  10. Fan P, Chen W, Zhao B, Hu J, Gao J, Fang G, Peng F (2018) Formulation and numerical implementation of tensile shape memory process of shape memory polymers. Polymer 148:370–381

    Article  Google Scholar 

  11. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17(16):1543–1558

    Article  Google Scholar 

  12. Nagata N (1990) Development of polynorbornene-based shape-memory resins. Kagaku (Kyoto) 45:554–557

    Google Scholar 

  13. Santo L, Quadrini F, Shape Memory Materials from Epoxy Matrix Composites, Smart Polymer Nanocomposites (2017) Springer International Publishing AG

    Google Scholar 

  14. Santo L, Quadrini F, Villadei W, Mascetti G, Zolesi V (2015) Shape memory epoxy foams and composites: Ribes_foam2 experiment on spacecraft “Bion-m1” and future perspective. Procedia Engineering 104:50–56

    Article  Google Scholar 

  15. Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic”. J Mater Sci Mater Med 21:2881–2886

    Article  Google Scholar 

  16. Jing X, Mi HY, Huang HX, Turng LS (2016) Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures”. J Mech Behav Biomed Mater 64:94–103

    Article  Google Scholar 

  17. Tian G, Zhu G, Ren T, Liu Y, Wei K, Liu YX (2019) The effects of PCL diol molecular weight on properties of shape memory poly (ε-caprolactone) networks. J Appl Polym Sci 136(6):47055

    Article  Google Scholar 

  18. Buckley PR, McKinley GH, Wilson TS, Small W, Benett WJ, Bearinger JP, McElfresh MW, Maitland DJ (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53(10):2075–2083

    Article  Google Scholar 

  19. Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001

    Article  Google Scholar 

  20. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135

    Article  Google Scholar 

  21. Cuevas JM, Laza JM, Rubio R, German L, Vilas JL, León LM (2011) Development and characterization of semi-crystalline polyalkenamer based shape memory polymers. Smart Mater Struct 20(3):035003

    Article  Google Scholar 

  22. Tcharkhtchi A, Abdallah-Elhirtsi S, Ebrahimi K, Fitoussi J, Shirinbayan M, Farzaneh S (2014) Some new concepts of shape memory effect of polymers. Polymers 6(4):1144–1163

    Article  Google Scholar 

  23. Luo XF, Mather PT (2013) Shape memory assisted self-healing coating. ACS Macro Lett 2:152–156

    Article  Google Scholar 

  24. Chatterjee T, Dutta J, Naskar K (2018) Unique shape memory behavior of polyolefinic blends with special reference to creep behavior, stress relaxation, and melt rheological study. Polym Eng Sci 58(6):876–885

    Article  Google Scholar 

  25. Cuevas JM, Rubio R, Germán L, Laza JM, Vilas JL, Rodriguez M, León LM (2012) Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends. Soft Matter 8(18):4928–4935

    Article  Google Scholar 

  26. Qi X, Dong P, Liu Z, Liu T, Fu Q (2016) Selective localization of multi-walled carbon nanotubes in bi-component biodegradable polyester blend for rapid electroactive shape memory performance. Compos Sci Technol 125:38–46

    Article  Google Scholar 

  27. Qi X, Xiu H, Wei Y, Zhou Y, Guo Y, Huang R, Bai H, Fu Q (2017) Enhanced shape memory property of polylactide/thermoplastic poly(ether)urethane composites via carbon black self-networking induced co-continuous structure. Compos Sci Technol 139:8–16

    Article  Google Scholar 

  28. Parameswaranpillai J, Sreekanth PM, Jose S, Siengchin S, Magueresse A, Janke A, Pionteck J (2017) Shape memory properties of epoxy/PPO-PEO-PPO triblock copolymer blends with tunable thermal transitions and mechanical characteristics. Ind Eng Chem Res 56(47):14069–14077

    Article  Google Scholar 

  29. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos Part A Appl Sci Manuf 40(11):1661–1672

    Article  Google Scholar 

  30. Li F, Chen Y, Zhu W, Zhang X, Xu M (1998) Shape memory effect of polyethylene/nylon 6 graft copolymers. Polymer 39:6929–6934

    Article  Google Scholar 

  31. Campo CJ, Mather PT (2005) PVDF: PMMA shape memory blends: effect of short carbon fiber addition. Polym Mater Sci Eng 93:933–934

    Google Scholar 

  32. Zheng XT, Zhou SB, Li XH, Weng H (2006) Shape memory properties of poly(D, L-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295

    Article  Google Scholar 

  33. Li F, Qi L, Yang J, Xu M, Luo X, Ma D (2000) Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships. J Appl Polym Sci 75:68–77

    Article  Google Scholar 

  34. Fei GX, Li G, Wu LS, Xia HS (2012) A spatially and temporally controlled shape memory process for electrically conductive polymer-carbon nanotube composites. Soft Matter 8:5123–5126

    Article  Google Scholar 

  35. Powers DS, Vaia RA, Koerner H, Serres J, Mirau PA (2008) NMR characterization of low hard segment thermoplastic polyurethane/carbon nanofiber composites. Macromolecules 41:4290–4295

    Article  Google Scholar 

  36. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33(8):820–852

    Article  Google Scholar 

  37. Jyotishkumar P, Pionteck J, Özdilek C, Moldenaers P, Cvelbar U, Mozetic M, Thomas S (2011) Rheology and pressure–volume–temperature behavior of the thermoplastic poly (acrylonitrile-butadiene-styrene)-modified epoxy-DDS system during reaction induced phase separation. Soft Matter 7(16):7248–7256

    Article  Google Scholar 

  38. Jyotishkumar P, Moldenaers P, George SM, Thomas S (2012) Visco-elastic phase separation in thermoplastic poly (styrene -acrylonitrile)-modified epoxy-DDM system during reaction induced phase separation. Soft Matter 8:7452–7462

    Article  Google Scholar 

  39. Parameswaranpillai J, Moldenaers P, Thomas S (2013) Rheological study of the SAN modified epoxy–DDM system: relationship between viscosity and viscoelastic phase separation. RSC Adv 3(46):23967–23971

    Article  Google Scholar 

  40. Artmann A, Bianchi O, Soares MR, Nunes RC (2010) Rheokinetic investigations on the thermal cure of phenol-formaldehyde novolac resins. Mater Sci Eng C 30(8):1245–1251

    Article  Google Scholar 

  41. Lucio B, de la Fuente JL (2016) Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method. Thermochim Acta 625:28–35

    Article  Google Scholar 

  42. Dorgan JR, Williams JS, Lewis DN (1999) Melt rheology of poly (lactic acid): entanglement and chain architecture effects. J Rheol 43(5):1141–1155

    Article  Google Scholar 

  43. Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interface Sci 6(5–6):457–463

    Article  Google Scholar 

  44. Han JH, Choi-Feng C, Li DJ, Han CD (1995). Effect of flow geometry on the rheology of dispersed two-phase blends of polystyrene and poly (methyl methacrylate). Polymer: 36(12):2451–2462

    Article  Google Scholar 

  45. Bose S, Bhattacharyya AR, Kulkarni AR, Pötschke P (2009) Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrile–butadiene–styrene with multiwall carbon nanotubes prepared by melt blending. Compos Sci Technol 69(3–4):365–372

    Article  Google Scholar 

  46. Bose S, Bhattacharyya AR, Kodgire PV, Misra A, Pötschke P (2007) Rheology, morphology, and crystallization behavior of melt-mixed blends of polyamide6 and acrylonitrile-butadiene-styrene: Influence of reactive compatibilizer premixed with multiwall carbon nanotubes. J Appl Polym Sci 106(5):3394–3408

    Article  Google Scholar 

  47. Singh S, Ghosh AK, Maiti SN, Raha S, Gupta RK, Bhattacharya S (2012) Morphology and rheological behavior of polylactic acid/clay nanocomposites. Polym Eng Sci 52(1):225–232

    Article  Google Scholar 

  48. Abraham TN, Ratna D, Siengchin S, Karger-Kocsis J (2008) Rheological and thermal properties of poly (ethylene oxide)/multiwall carbon nanotube composites. J Appl Polym Sci 110(4):2094–2101

    Article  Google Scholar 

  49. Bhattacharyya A, Tobushi H (2000) Analysis of the isothermal mechanical response of a shape memory polymer rheological model. Polym Eng Sci 40(12):2498–2510

    Article  Google Scholar 

  50. Hosseini H, Berdyshev BV, Iskopintsev I (2015) Rheological modeling for shape-memory thermoplastic polymers. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metallurg Eng 9(8):980–983

    Google Scholar 

  51. Liu Y, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int J Plasticity 22(2):279–313

    Article  MATH  Google Scholar 

  52. Inomata K, Nakagawa K, Fukuda C, Nakada Y, Sugimoto H, Nakanishi E (2010) Shape memory behavior of poly (methyl methacrylate)-graft-poly (ethylene glycol) copolymers. Polymer 51(3):793–798

    Article  Google Scholar 

  53. Ping P, Wang W, Chen X, Jing X (2007) The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes. J Polym Sci B 45(5):557–570

    Article  Google Scholar 

  54. Sungsanit K, Kao N, Bhattacharya SN (2012) Properties of linear poly (lactic acid)/polyethylene glycol blends. Polym Eng Sci 52(1):108–116

    Article  Google Scholar 

  55. Feng L, Bian X, Chen Z, Li G, Chen X (2013) Mechanical, aging, optical and rheological properties of toughening polylactide by melt blending with poly (ethylene glycol) based copolymers. Polym Degrad Stab 98(9):1591–1600

    Article  Google Scholar 

  56. Wei Y, Huang R, Dong P, Qi XD, Fu Q (2018) Preparation of polylactide/poly (ether) urethane blends with excellent electro-actuated shape memory via incorporating carbon black and carbon nanotubes hybrids fillers. Chin J Polym Sci 36(10):1175–1186

    Article  Google Scholar 

  57. Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255

    Article  Google Scholar 

  58. McClory C, McNally T, Baxendale M, Pötschke P, Blau W, Ruether M (2010) Electrical and rheological percolation of PMMA/MWCNT nanocomposites as a function of CNT geometry and functionality. Eur Polym J 46(5):854–868

    Article  Google Scholar 

  59. Chen J, Zhang ZX, Huang WB, Yang JH, Wang Y, Zhou ZW, Zhang JH (2015) Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane. Mater Des 69:105–113

    Article  Google Scholar 

  60. Haghayegh M, Mir Mohamad Sadeghi G (2012) Synthesis of shape memory polyurethane/clay nanocomposites and analysis of shape memory, thermal, and mechanical properties. Polym Compos 33(6):843–849

    Article  Google Scholar 

  61. Kim MS, Jun JK, Jeong HM (2008) Shape memory and physical properties of poly (ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Compos Sci Technol 68(7–8):1919–1926

    Article  Google Scholar 

  62. Meng Q, Hu J, Zhu Y (2007) Shape-memory polyurethane/multiwalled carbon nanotube fibers. J Appl Polym Sci 106(2):837–848

    Article  Google Scholar 

  63. Gelfer MY, Song HH, Liu L, Hsiao BS, Chu B, Rafailovich M, Zaitsev V (2003) Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly (methyl methacrylate) blends. J Polym Sci B 41(1):44–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotishkumar Parameswaranpillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rangappa, S.M., Siengchin, S., Parameswaranpillai, J. (2020). Rheology of Shape-Memory Polymers, Polymer Blends, and Composites. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics