Skip to main content

Classification of Shape-Memory Polymers, Polymer Blends, and Composites

  • Chapter
  • First Online:
Shape Memory Polymers, Blends and Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

Since the last three decades, international research interest into the shape-memory effect in polymers has been rapidly growing. The recent progresses made in the synthesis of different types of shape-memory polymers (SMPs) significantly expanded the practical potential of their applications in such fields like microelectromechanical systems, medical and biomimetic devices, sensors, actuators, self-healing systems, etc. The present chapter is focused on the classification of shape-memory polymeric materials (SMPs), as well as the current developments and most important concepts for these types of smart polymers. The recent progress in the development of shape-memory polymer composites (SMPCs) and shape-memory polymer blends (SMPBs) is also highlighted. In this chapter, different classification criteria of SMPs with a view to polymer type and structure and external stimulus are described. Particular emphasis is placed on the factors enabling shape-memory effects, especially structure–property correlations that influence shape-memory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10(4):20–28

    Article  Google Scholar 

  2. Hornbogen E (2006) Comparison of shape memory metals and polymers. Adv Eng Mat 14:101–106

    Article  Google Scholar 

  3. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 45–50:3–33

    Article  Google Scholar 

  4. Lester B, Vernon B, Vernon HM (1941) Process of manufacturing articles of thermoplastic synthetic resins. US 2234993

    Google Scholar 

  5. Safranski DL, Griffis JC (2017) Shape-memory polymer device design. Elsevier, Oxford

    Google Scholar 

  6. Rainer WC, Redding EM, Hitov JJ, Sloan AW, Steward WD (1964) Heat-shrinkable polyethylene. US 3144398

    Google Scholar 

  7. Pilate F, Toncheva A, Dubois P, Raquez J-M (2016) Shape-memory polymers for multiple applications in the material world. Europ Polym J 80:268–294

    Article  Google Scholar 

  8. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763

    Article  Google Scholar 

  9. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mat Chem 17:1543–1558

    Article  Google Scholar 

  10. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  Google Scholar 

  11. Aguilar MR, Roman JS (2014) Smart polymers and their applications. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  12. Lee SH, Kim JW, Kim BK (2004) Shape memory polyurethanes having crosslinks in soft and hard segments. Smart Mater Struc 13:1345–1350

    Article  Google Scholar 

  13. Leng JS, Du SY (2010) Shape memory polymer and multifunctional composite. CRC Press, Taylor & Francis Group, New York

    Google Scholar 

  14. Naga N, Tsuchiya Toyata A (2006) Synthesis and properties of polyethylene and polypropylene containing hydroxylated cyclic units in the main chain. Polymer 47:520–526

    Article  Google Scholar 

  15. Kelch S, Steuer S, Schmidt AM, Lendlein A (2007) Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromol 8:1018–1027

    Article  Google Scholar 

  16. Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Composites:Part A 40:1661–1672

    Article  Google Scholar 

  17. Ratna D, Karger-Kocsis (2008) Recent advances in shape memory polymers and composites:a review. J Mater Sci 43:254–269

    Article  Google Scholar 

  18. Sakurai K, Shirakawa Y, Kashiwagi T, Takahashi T (1994) Crystal transformation of styrene–butadiene block-copolymer. Polymer 35:4238–4239

    Article  Google Scholar 

  19. Lui C, Mather PT (2002) Thermomechanical characterization of a tailored series of shape memory polymers. J Appl Med Polym 6:47–52

    Google Scholar 

  20. Liu G, Ding X, Cao Y, Zheng Z, Peng Y (2005) Novel shape-memory polymer with two transition temperatures. Macromol Rapid Commun 26(8):649–652

    Article  Google Scholar 

  21. Chen SJ, Hu JL, Liu YQ, Liem HM, Zhu Y, Meng QH (2007) Effect of molecular weight on shape memory behavior in polyurethane films. Polym Int 56:1128–1134

    Article  Google Scholar 

  22. Hu J, Yang Z, Yeung L, Ji F, Liu Y (2005) Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions. Polym Int 54:600–605

    Article  Google Scholar 

  23. Zouohong Y, Jinlian H, Yeqiu L, Lapyan Y (2006) The study of crosslinked shape memory polyurethanes. Mater Chem Phys 98:368–372

    Article  Google Scholar 

  24. Buckley CP, Prisacariu C, Caraculacu A (2007) Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials. Polymer 48:1388–1396

    Article  Google Scholar 

  25. Xu J, Shi W, Pang W (2006) Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47:457–465

    Article  Google Scholar 

  26. Leng JS, Wu XL, Liu YJ (2009) Effect of linear monomer on thermomechanical properties of epoxy shape-memory polymer. Smart Mater Struct 18(095031):1–6

    Google Scholar 

  27. Chang YW, Mishra JK, Cheong JH, Kim DK (2007) Thermomechanical properties and shape memory effect of epoxidized natural rubber crosslinked by 3-amino-1,2,4-triazole. Polym Int 56:694–698

    Article  Google Scholar 

  28. Zhang SF, Feng YK, Zhang L, Sun JF, Xu XK, Xu YS (2007) Novel interpenetrating networks with shape-memory properties. J Polym Sci Part A Polym Chem 45:768–775

    Article  Google Scholar 

  29. Li F, Zhu W, Zhang X, Zhao C, Xu M (1999) Shape memory effect of ethylene–vinyl acetate copolymers. J Appl Polym Sci 71:1063–1070

    Article  Google Scholar 

  30. Helminen AO, Korhonen H, Seppala JV (2002) Cross-linked poly(epsiloncaprolactone/D, L-lactide) copolymers with elastic properties. Macromol Chem Phys 203:2630–2639

    Article  Google Scholar 

  31. Morshedian J, Khonakdar HA, Mehrabzadeh M, Eslami H (2003) Preparation and properties of heat-shrinkable cross-linked low-density polyethylene. Adv in Polym Tech 22:112–119

    Article  Google Scholar 

  32. Liu C, Chun S, Mather P, Zheng L, Haley E, Coughlin B (2002) Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior. Macromol 35:9868–9874

    Article  Google Scholar 

  33. Liu C, Chun SB, Mather PT, Zheng L, Haley EH, Coughlin EB (2002) Chemically cross-linked polycyclooctene: synthesis, characterization, and shape memory behavior. Macromol 35:9868–9874

    Article  Google Scholar 

  34. Zhu G, Liang G, Xu Q, Yu Q (2003) Shape-memory effects of radiation crosslinked poly(epsilon-caprolactone). J Appl Polym Sci 90:1589–1595

    Article  Google Scholar 

  35. Knight PT, Lee KM, Chung T, Mather PT (2009) PLGA-POSS end-linked networks with tailored degradation and shape memory behavior. Macromol 42:6596–6605

    Article  Google Scholar 

  36. Schoener CA, Weyand CB, Murthy R, Grunlan MA (2010) Shape memory polymers with silicon-containing segments. J Mater Chem 20:1787–1793

    Article  Google Scholar 

  37. Wischke C, Lendlein A (2010) Shape-memory polymers as drug carriers - a multifunctional system. Pharma Research 27:527–529

    Article  Google Scholar 

  38. Kalita H (2018) Shape memory polymers. De Gruyter, Berlin

    Book  Google Scholar 

  39. Cao Q, Liu PS (2006) Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters. Polymer Bull 57:889–899

    Article  Google Scholar 

  40. Nagahama K, Ueda Y, Ouchi T, Ohya Y (2009) Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. Biomacromol 10:1789–1794

    Article  Google Scholar 

  41. Wang WS, Ping P, Chen X, Jing X (2006) Polylactide-based polyurethane and its shape-memory behavior. Eur Polymer J 42:1240–1249

    Article  Google Scholar 

  42. Xue LA, Dai SY, Li Z (2010) Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials 31:8132–8140

    Article  Google Scholar 

  43. Lendlein A, Zotzmann J, Feng Y, Altheld A, Kelch S (2009) Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromol 10:975–982

    Article  Google Scholar 

  44. Meng QH, Hu J, Ho KC, Ji F, Chen S (2009) The shape memory properties of biodegradable chitosan/poly(l-lactide) composites. J Poly and Envi 17:212–224

    Article  Google Scholar 

  45. Min CC, Cui W, Bei J, Wang S (2005) Biodegradable shape-memory polymer polylactide-co- poly(glycolide-co-caprolactone) multiblock copolymer. Polym for Advan Tech 16:608–615

    Article  Google Scholar 

  46. Lu XL, Sun ZJ, Cai W, Gao ZY (2008) Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. J Mat Sci Mat Med 19:395–399

    Article  Google Scholar 

  47. Luo XL, Zhao MC, Wang MZ, Ding LN, Ma DZ (2000) Thermally stimulated shape memory behavior of (ethylene oxide-butylene terephthalate) segmented copolymer. Chin J Polym Sci 18:357–361

    Google Scholar 

  48. Xu M, Li F (1999) Thermally stimulated shape memory behavior of polymers with physical crosslinks. Chin J Polym Sci 17:203–213

    Google Scholar 

  49. Lendlein A, Kelch S, Kratz K (2006) Kunststoffe mit programmiertem Gedächtnis. Kunstoffe 2:54–59

    Google Scholar 

  50. Jeong HM, Kim BK, Choi YJ (2000) Synthesis and properties of thermotropic liquid crystalline polyurethane elastomers. Polymer 41:1849–1855

    Article  Google Scholar 

  51. Zhu Y, Hu JL, Yeung KW, Liu YQ, Lien HM (2006) Influence of ionic groups on the crystallization and melting behavior of segmented polyurethane ionomers. J Appl Polym Sci 100:4603–4613

    Article  Google Scholar 

  52. Zhu Y, Hu JL, Yeung LY, Liu Y, Ji FL, Yeung KW (2006) Development of shape memory polyurethane fiber with complete shape recoverability. Smart Mater Struct 15:1385–1394

    Article  Google Scholar 

  53. Li Y, Hu ZB, Chen YY (1997) Shape memory gels made by the modulated gel technology. J Appl Polym Sci 63(9):1173–1178

    Article  Google Scholar 

  54. Lu XL, Cai W, Gao Z, Tang WJ (2007) Shape memory effects of poly(Llactide) and its copolymer with poly(epsilon-caprolactone). Polym Bull 58(2):381–391

    Article  Google Scholar 

  55. Wong YS, Venkatraman SS (2010) Recovery as a measure of oriented crystalline structure in poly(L-lactide) used as shape memory polymer. Acta Mater 58(1):49–58

    Article  Google Scholar 

  56. Behl M, Bellin I, Kelch S, Wagermaier W, Lendlein A (2009) One-step process for creating triple-shape capability of AB polymer networks. Adv Funct Mat 19(1):102–108

    Article  Google Scholar 

  57. Jeong HM, Song JH (2001) Miscibility and shape memory property of poly(vinyl chloride)/thermoplastic polyurethane blends. J Mater Sci 36(22):5457–5463

    Article  Google Scholar 

  58. Jeong HM, Ahn BK, Kim BK (2001) Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin. Eur Polym J 37(11):2245–2252

    Article  Google Scholar 

  59. Zhang H, Wang H, Zhong W, Du Q (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50(6):1596–1601

    Article  Google Scholar 

  60. Liu GQ, Guan CL, Xia H, Guo F, Ding X, Peng Y (2006) Novel shape-memory polymer based on hydrogen bonding. Macromol Rapid Comm 27(14):1100–1104

    Article  Google Scholar 

  61. Liu YP, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int J Plast 22:279–313

    Article  MATH  Google Scholar 

  62. Hu J (2014) Shape memory polymers: fundamentals, advances and applications. Smithers Rapra, Shawbury

    Google Scholar 

  63. Li J, Viveros JA, Wrue MH, Anthamatten M (2007) Shape memory effects in polymer networks containing reversibly associating side-groups. Adv Mater 19(19):2851–2855

    Article  Google Scholar 

  64. Zhu Y, Hu J, Liu Y (2009) Shape memory effect of thermoplastic segmented polyurethanes with self-complementary quadruple hydrogen bonding in soft segments. Eur Phys J E 28(1):3–10

    Article  Google Scholar 

  65. Zhang S, Yu Z, Govender T, Luo H, Li B (2008) A novel supramolecular shape memory material based on partial α-CD–PEG inclusion complex. Polymer 49(15):3205–3210

    Article  Google Scholar 

  66. Liu G, Ding X, Cao Y, Zheng Z, Peng Y (2004) Shape memory of hydrogen-bonded polymer network/poly (ethylene glycol) complexes. Macromol 37(6):2228–2232

    Article  Google Scholar 

  67. Osada Y, Matsuda A (1995) Shape memory in hydrogels. Nat 376:219–220

    Google Scholar 

  68. Kagami Y, Gong JP, Osada Y (1996) Shape memory behaviors of crosslinked copolymers containing stearyl acrylate. Macromol Rapid Comm 17(8):539–543

    Article  Google Scholar 

  69. Hirai T, Matuyama H, Suzuki T, Hayashi S (1992) Effect of chemical crosslinking under elongation on shape restoring of poly(vinyl alcohol) hydrogel. J Appl Polym Sci 46(8):1449–1451

    Article  Google Scholar 

  70. Hirai T, Matuyama H, Suzuki T, Hayashi S (1992) Shape memorizing properties of a hydrogel of poly(vinyl alcohol). J Appl Polym Sci 45(10):1849–1855

    Article  Google Scholar 

  71. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    Article  Google Scholar 

  72. Zheng XT, Zhou S, Yu X, Li X, Feng B, Qu S, Weng J (2008) Effect of in vitro degradation of poly(D, L-lactide)/beta-tricalcium composite on its shape memory properties. J Biomed Mater Res B 86B(1):170–180

    Article  Google Scholar 

  73. Zhou SB, Zheng X, Yu X, Wang J, Weng J, Li X, Feng B, Yin M (2007) Hydrogen bonding interaction of poly(D, L-lactide)/hydroxyapatite nanocomposites. Chem Mater 19(2):247–253

    Article  Google Scholar 

  74. Ni QQ, Zhang CS, Fu Y, Dai G, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81:176–184

    Article  Google Scholar 

  75. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating Carbon Nanotubes. Macromol Rapid Commun 26:412–416

    Article  Google Scholar 

  76. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Comm 26:412–416

    Article  Google Scholar 

  77. Sahoo NG, Jung YC, Goo NS, Cho JW (2005) Conducting shape memory polyurethane-polypyrrole composites for an electroactive actuator. Macromol Mater Eng 290:1049–1055

    Article  Google Scholar 

  78. Koerner H, Price G, Pearce NA, Alexander M, Vaia R (2004) Remotely actuated polymer nanocomposites - stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Mater 3:115–120

    Article  Google Scholar 

  79. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci 103:3540–3545

    Article  Google Scholar 

  80. Bilici C, Can V, Nöchel U, Behl M, Lendlein A, Okay O (2016) Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromol 49(19):7442–7449

    Article  Google Scholar 

  81. Lee YM, Kim SH, Cho CS (1996) Synthesis and swelling characteristics of pH and thermoresponsive interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and poly(acrylic acid). J Appl Polym Sci 62:301–311

    Article  Google Scholar 

  82. Chung T, Romo-Uribe A, Mather PT (2008) Two-way reversible shape memory in a semicrystalline network. Macromol 41:184–192

    Article  Google Scholar 

  83. Huang W, Toh W (2000) Training two-way shape memory alloy by reheat treatment. J Mater Sci Lett 19:1549–1550

    Article  Google Scholar 

  84. Liu Y, Liu Y, Humbeeck JV (1999) Two-way shape memory effect developed by martensite deformation in NiTi. Acta Mater 47(1):199–209

    Article  Google Scholar 

  85. Tokuda M, Sugino S, Inaba T (2001) Two-way shape memory behavior obtained by combined loading training. J Intell Mater Syst Struct 12:289–292

    Article  Google Scholar 

  86. Ahir SV, Tajbakhsh AR, Terentjev EM (2006) Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater 16:556–560

    Article  Google Scholar 

  87. Li MH, Keller P, Li B, Wang X, Brunet M (2003) Light-driven side on nematic elastomer actuators. Adv Mater 15:569–572

    Article  Google Scholar 

  88. Naciri J, Srinivasan A, Jeon H, Nikolov N, Keller P, Ratna BR (2003) Nematic elastomer fiber actuator. Macromol 36(2003):8499–8505

    Google Scholar 

  89. Yu Y, Nakano M, Ikeda T (2003) Photomechanics: directed bending of a polymer film by light. Nat 425:145–145

    Article  Google Scholar 

  90. Hu Z, Zhang X, Li Y (1995) Synthesis and application of modulated polymer gels. Science 269:525–526

    Article  Google Scholar 

  91. Wang K, Jia YG, ZhuXX (2017) Two-way reversible shape memory polymers made of cross-linked cocrystallizable random copolymers with tunable actuation temperatures. Macromol 50(21):8570–8579

    Article  Google Scholar 

  92. Westbrook K, Mather PT, Parakh V, Dunn ML, Ge Q, Lee BM, Qi HJ (2011) Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mat and Struct 20(6):1–9

    Article  Google Scholar 

  93. Chen SJ, Hu JL, Zhuo H, Zhu Y (2008) Two-way shape memory effect in polymer laminates. Mat Let 62:4088–4090

    Article  Google Scholar 

  94. Ware T, Hearon K, Lonnecker A, Wooley KL, Maitland DJ, Voit W (2012) Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromol 45(2):1062–1069

    Article  Google Scholar 

  95. Bellin I, Kelch S, Langer R, Lendlein A (2006) Polymeric triple-shape materials. Proc Natl Acad Sci USA 103(48):18043–18047

    Article  Google Scholar 

  96. Xie T (2010) Tunable polymer multi-shape memory effect. Nat 464(7286):267–270

    Google Scholar 

  97. Luo X, Mather P (2010) Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6:2146–2149

    Article  Google Scholar 

  98. Luo X, Mather PT (2010) Triple-Shape Polymeric Composites (TSPCs). Adv Funct Mater 20(16):2649–2656

    Article  Google Scholar 

  99. Li G, Zhang H, Fortin D, Xia H, Zhao Y (2015) Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 27,31(42):11709–11716

    Article  Google Scholar 

  100. Li Y, Chen H, Liu D, Wang W, Liu Y, Zhou S (2015) pH-responsive shape memory poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 17:7(23):12988-12999

    Article  Google Scholar 

  101. Li Xixi, Zhu Yaofeng, Dong Yubing, Liu Meng, Ni Qingqing, Yaqin Fu (2015) Epoxy resin composite bilayers with triple-shape memory effect. J Nanomat 475316:1–8

    Google Scholar 

  102. Kim YJ, Park HC, Kim BK (2015) Triple shape-memory effect by silanized polyurethane/silane-functionalized graphene oxide nanocomposites bilayer. High Perform Polym 27(7):886–897

    Article  Google Scholar 

  103. Behl M, Ridder U, Feng Y, Kelch S, Lendlein A (2009) Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter 5(3):676–684

    Article  Google Scholar 

  104. Sun L, Huang WM (2010) Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6(18):4403–4406

    Article  Google Scholar 

  105. Prathumrat P, Tiptipakorn S, Rimdusit S (2017) Multiple-shape memory polymers from benzoxazine–urethane copolymers. Smart Mater Struct 26(9):1–9

    Google Scholar 

  106. Samuel C, Barrau S, Lefebvre JM, Raquez JM, Dubois P (2014) Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends.Macromol 47(19):6791–6803

    Google Scholar 

  107. Buckley PR, McKinley GH, Wilson T, Small W, Benett J, McElfresh M, Maitland D (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53(10):2075–2083

    Article  Google Scholar 

  108. Tobushi H, Hashimoto T, Hayashi S, Yamada E (1997) Thermomechanical constitutive modeling in shape memory polymer of polyurethane series. J Intell Mater Syst Struct 8:711–718

    Article  Google Scholar 

  109. Tobushi H, Okumura K, Hayashi S, Ito N (2001) Thermomechanical constitutive model of shape memory polymer. Mech Mater 33(10):545–554

    Article  Google Scholar 

  110. Lu W, Le X, Zhang J, Huang Y, Chen T (2017) Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem Soc Rev 46:1284–1294

    Article  Google Scholar 

  111. Lan X, Wang XH, Liu YJ, Leng JS (2009) Fiber reinforced shape-memory polymer composite, its application in a deployable hinge. Smart Mater Struct 8(024002):1–6

    Google Scholar 

  112. Liang C, Rogers CA, Malafeew E (1997) Investigation of shape memory polymers and their hybrid composites. J Intell Mater Syst Struct 8:380–386

    Article  Google Scholar 

  113. Wei ZG, Sandstroum R, Miyazaki S (1998) Shape memory materials and hybrid composites for smart systems: part II shape memory hybrid composites. J Mater Sci 33(15):3763–3783

    Article  Google Scholar 

  114. Simkevitz S, Naguib HE (2008) Development of two part porous shape memory polymer nanocomposites. Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2008 1:453–460

    Google Scholar 

  115. Lamm M, Wang Z, Zhou J, Yuan L, Zhang X, Tang C (2018) Sustainable epoxy resins derived from plant oils with thermo- and chemo-responsive shape memory behavior. Polymer 111:121–127

    Article  Google Scholar 

  116. Truong TT, Thai SH, Nguyen HT (2018) Poly(ε-caprolactone) networks with tunable thermoresponsive shape memory via a facile photo-initiated thiol–ene pathway. J Mater Sci 53:2236–2252

    Article  Google Scholar 

  117. Kalita H, Karak N (2014) Biobased hyperbranched shape-memory polyurethanes: effect of different vegetable oils. J Appl Polym 131:1–8

    Article  Google Scholar 

  118. Han XJ, Dong ZQ, Fan MM, Liu Y, li JH, Wang YF, Yuan QJ, Li BJ, Zhang S (2012) pH-induced shape-memory polymers. Macromol Rapid Commun 27:33(12):1055–1060

    Article  Google Scholar 

  119. Song Q, Chen H, Zhou S, Zhao K, Wang B, Hu P (2016) Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym Chem 7:1739–1746

    Article  Google Scholar 

  120. Xiao Y, Gong X, Kang Y, Jiang Z, Zhang S, Li B (2016) Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. Chem Commun 52:10609–10612

    Article  Google Scholar 

  121. Yang B, Huang W, Li C, Li L (2006) Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 47(4):1348–1356

    Article  Google Scholar 

  122. Du H, Zhang J (2010) Shape memory polymer based on chemically cross-linked poly(vinyl alcohol) containing a small number of water molecules. J Colloid Polym Sci 288:15–24

    Article  Google Scholar 

  123. Ghobadi E, Marquardt A, Zirdehi E, Neuking K, Varnik F, Eggeler G, Steeb H (2018) The influence of water and solvent uptake on functional properties of shape-memory polymers. Inter J Poly Sci 7819353:15–30

    Google Scholar 

  124. Leng JS, Lv H, Liu Y, Du SY (2007) Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl Phys Lett 91(144105):1–3

    Google Scholar 

  125. Leng J, Lan X, Liu Y, Du S, Huang W, Liu N, Phee S, Yuan Q (2008) Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett 92(014104):1–2

    Google Scholar 

  126. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  Google Scholar 

  127. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172

    Article  Google Scholar 

  128. Zrínyi M (2000) Intelligent polymer gels controlled by magnetic fields. Colloid Polym Sci 278(2):98–103

    Article  Google Scholar 

  129. Fuhrer R, Athanassiou EK, Luechinger NA, Stark WJ (2009) Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small 5(3):383–388

    Article  Google Scholar 

  130. Gong T, Li W, Chen H, Wang L, Shao S, Zhou S (2012) Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater 8(3):1248–1259

    Article  Google Scholar 

  131. Jiang H, Kelch S, Lendlein A (2006) Polymers move in response to light. Ad Mat 18(11):1471–1475

    Article  Google Scholar 

  132. Lu H, Yao Y, Huang WM, Leng J, Hui D (2014) Significantly improving infrared light-induced shape recovery behavior of shape memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride. Compos Part B 62:256–261

    Article  Google Scholar 

  133. Inam F, Wong D, Kuwata M, Peijs T (2010) Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. J of Nanomat 453420:12–24

    Google Scholar 

  134. Shou Q, Uto K, Iwanaga M, Ebara M, Aoyagi T (2014) Nearinfrared light-responsive shape-memory poly([epsiv]-caprolactone) films that actuate in physiological temperature range. Polym J 46(8):492–498

    Article  Google Scholar 

  135. Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nat 434(7035):879–882

    Google Scholar 

  136. Miyamae K, Nakahata M, Takashima Y, Harada A (2015) Self-healing, expansion − contraction, and shape memory properties of a preorganized supramolecular hydrogel through host guest interactions. Angew Chem 127(31):9112–9115

    Article  Google Scholar 

  137. Aoki D, Teramoto Y, Nishio Y (2007) SH-containing cellulose acetate derivatives: preparation and characterization as a shape memory-recovery material. Biomacromol 8(12):3749–3757

    Article  Google Scholar 

  138. Xuzhou Y, Feng W, Bo Z, Feihe H (2012) Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 41:6042–6065

    Article  Google Scholar 

  139. Dong Z, Cao Y, Yuan Q, Wang Y, Li J, Li B, Zhang S (2013) Redox and glucose induced shape memory polymers. Macromol Rapid Comm 34(10):867–872

    Article  Google Scholar 

  140. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22(31):3388–3410

    Article  Google Scholar 

  141. Kruft MAB, Benzina A, Blezer R, Koole LH (1996) Studies on radio-opaque polymeric biomaterials with potential applications to endovascular prostheses. Biomat 17:1803–1812

    Article  Google Scholar 

  142. Small W, Buckley PR, Wilson TS, Benett WJ, Hartman J, Saloner D, Maitland DJ (2007) Shape memory polymer stent with expandable foam: a new concept for endovascular embolization of fusiform aneurysms. IEEE T Bio-Med Eng 54(6):1157–1160

    Article  Google Scholar 

  143. Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomat 28(14):2255–2263

    Article  Google Scholar 

  144. Baer GM, Wilson TS, Small W, Hartman J, Benett WJ, Matthews DL, Maitland DJ (2009) Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes. J Biomed Mater Res B Appl Biomater 90(1):421–429

    Article  Google Scholar 

  145. Wache HM, Tartakowska DJ, Hentrich A, Wagner MH (2003) Development of a polymer stent with shape memory effect as a drug delivery system. J Mater Sci-Mater Med 14(2):109–112

    Article  Google Scholar 

  146. Hampikian JM, Heaton BC, Tong FC, Zhang ZQ, Wong CP (2006) Mat Sci Eng C Mater 26(8):1373–1379

    Article  Google Scholar 

  147. Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic. J Mater Sci Mater Med 21(10):2881–2886

    Article  Google Scholar 

  148. Rousseau LA, Berger E, Owens J, Kia H (2012) Shape memory polymer medical cast. US 8100843B2

    Google Scholar 

  149. Takashima K, Rossiter J, Mukai T (2010) McKibben artificial muscle using shape-memory polymer. Sensor Actuat A-Phys 164(1–2):116–124

    Article  Google Scholar 

  150. Harris KD, Cuypers R, Scheibe P, van Oosten CL, Bastiaansen CWM, Lub J, Broer DJ (2005) Large amplitude light-induced motion in high elastic modulus polymer actuators. J Mater Chem 15(47):5043–5048

    Article  Google Scholar 

  151. Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape memory polymer nanocomposites. Acta Mater 50(20):5115–5126

    Article  Google Scholar 

  152. Gall K, Kreiner P, Turner D, Hulse M (2004) Shape-memory polymers for microelectromechanical systems. J Microelectromech S 13(3):472–483

    Article  Google Scholar 

  153. Serrano MC, Ameer GA (2012) Recent insights into the biomedical applications of shape-memory polymers. Macromol Biosci 12(9):1156–1171

    Article  Google Scholar 

  154. Xiao XC, Xie T, Cheng YT (2010) Self-healable graphene polymer composites. J Mater Chem 20(17):3508–3514

    Article  Google Scholar 

  155. Rodriguez ED, Luo XF, Mather PT (2011) Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Inter 3(2):152–161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Sienkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strzelec, K., Sienkiewicz, N., Szmechtyk, T. (2020). Classification of Shape-Memory Polymers, Polymer Blends, and Composites. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics