Skip to main content

Biodegradable Shape-Memory Polymers

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 115))

Abstract

Biodegradable shape-memory polymers (BSMP) have arisen as highly promising materials for biomedical applications due to their valuable properties. Their chemical and structural diversities, low toxicity, biodegradation, and resorption added to their capability to adapt their shape due to their shape-memory property make them excellent materials for many implantable devices. In this chapter, the main characteristics of these materials and their applications in biomedicine are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kim J, Lee JE, Lee SH et al (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Adv Mater 20:478–483. https://doi.org/10.1002/adma.200701726

    Article  Google Scholar 

  2. Alexander C, Shakesheff KM (2006) Responsive polymers at the biology/materials science interface. Adv Mater 18:3321–3328. https://doi.org/10.1002/adma.200502640

    Article  Google Scholar 

  3. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 80, 296:1673–1676. https://doi.org/10.1126/science.1066102

    Article  Google Scholar 

  4. Neffe AT, Hanh BD, Steuer S, Lendlein A (2009) Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv Mater 21:3394–3398. https://doi.org/10.1002/adma.200802333

    Article  Google Scholar 

  5. Bikiaris DN (2013) Nanocomposites of aliphatic polyesters: an overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters. Polym Degrad Stab 98:1908–1928. https://doi.org/10.1016/j.polymdegradstab.2013.05.016

    Article  Google Scholar 

  6. Stocum DL (1998) Regenerative biology and engineering: strategies for tissue restoration. Wound Repair Regen 6:276–290. https://doi.org/10.1046/j.1524-475X.1998.60404.x

    Article  Google Scholar 

  7. Lendlein A, Jiang H, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882. https://doi.org/10.1038/nature03496

    Article  Google Scholar 

  8. Yu Y, Ikeda T (2005) Photodeformable polymers: A new kind of promising smart material for micro- and nano-applications. Macromol Chem Phys 206:1705–1708. https://doi.org/10.1002/macp.200500318

    Article  Google Scholar 

  9. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today 10:20–28. https://doi.org/10.1016/S1369-7021(07)70047-0

    Article  Google Scholar 

  10. Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763. https://doi.org/10.1016/j.progpolymsci.2012.06.001

    Article  Google Scholar 

  11. Parameswaranpillai J, Ramanan SP, George JJ et al (2018) PEG- ran -PPG modified epoxy thermosets: a simple approach to develop tough shape memory polymers. Ind Eng Chem Res 57:3583–3590. https://doi.org/10.1021/acs.iecr.7b04872

    Article  Google Scholar 

  12. Parameswaranpillai J, Ramanan SP, Jose S et al (2017) Shape memory properties of Epoxy/PPO-PEO-PPO triblock copolymer blends with tunable thermal transitions and mechanical characteristics. Ind Eng Chem Res 56:14069–14077. https://doi.org/10.1021/acs.iecr.7b03676

    Article  Google Scholar 

  13. Zheng Y, Li Y, Hu X et al (2017) Biocompatible shape memory blend for self-expandable stents with potential biomedical applications. ACS Appl Mater Interfaces 9:13988–13998. https://doi.org/10.1021/acsami.7b04808

    Article  Google Scholar 

  14. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  Google Scholar 

  15. Tian H, Tang Z, Zhuang X et al (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280. https://doi.org/10.1016/j.progpolymsci.2011.06.004

    Article  Google Scholar 

  16. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27:1123–1163. https://doi.org/10.1016/S0079-6700(02)00012-6

    Article  Google Scholar 

  17. Xu J, Song J (2015) Polylactic acid (PLA)-based shape-memory materials for biomedical applications. Shape Mem Polym Biomed Appl 197–217. https://doi.org/10.1016/b978-0-85709-698-2.00010-6

    Chapter  Google Scholar 

  18. Wong YS, Xiong Y, Venkatraman SS, Boey FYC (2008) Shape memory in un-cross-linked biodegradable polymers. J Biomater Sci Polym Ed 19:175–191. https://doi.org/10.1163/156856208783432516

    Article  Google Scholar 

  19. Meng B, Wang J, Zhu N et al (2006) Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J Mater Sci Mater Med 17:611–617. https://doi.org/10.1007/s10856-006-9223-9

    Article  Google Scholar 

  20. Wong YS, Venkatraman SS (2010) Recovery as a measure of oriented crystalline structure in poly(l-lactide) used as shape memory polymer. Acta Mater 58:49–58. https://doi.org/10.1016/j.actamat.2009.08.075

    Article  Google Scholar 

  21. Lu XL, Cai W, Gao ZY (2008) Shape-memory behaviors of biodegradable poly(L-lactide-co-ε-caprolactone) copolymers. J Appl Polym Sci 108:1109–1115. https://doi.org/10.1002/app.27703

    Article  Google Scholar 

  22. Lendlein A, Kelch S (2002) Shape-Memory Effect From permanent shape. Angew Chemie 41:2034–2057. https://doi.org/10.1016/1433-7851/02/4112-2035

  23. Bao M, Zhou Q, Dong W et al (2013) Ultrasound-modulated shape memory and payload release effects in a biodegradable cylindrical rod made of chitosan-functionalized PLGA microspheres. Biomacromolecules 14:1971–1979. https://doi.org/10.1021/bm4003464

    Article  Google Scholar 

  24. Matsumura S, Hlil AR, Lepiller C et al (2008) Ionomers for proton exchange membrane fuel cells with sulfonic acid groups on the end-groups: novel branched poly(ether-ketone)s. Am Chem Soc Polym Prepr Div Polym Chem 49:511–512. https://doi.org/10.1002/pola

    Article  Google Scholar 

  25. Chen C, Hu J, Huang H et al (2016) Design of a smart nerve conduit based on a shape-memory polymer. Adv Mater Technol 1:1–10. https://doi.org/10.1002/admt.201600015

    Article  Google Scholar 

  26. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002

    Article  Google Scholar 

  27. Lendlein A, Kelch S (2005) Degradable, multifunctional polymeric biomaterials with shape-memory. Mater Sci Forum 492–493:219–224. https://doi.org/10.4028/www.scientific.net/MSF.492-493.219

    Article  Google Scholar 

  28. Salvekar AV, Zhou Y, Huang WM et al (2015) Shape/temperature memory phenomena in un-crosslinked poly-ε-caprolactone (PCL). Eur Polym J 72:282–295. https://doi.org/10.1016/j.eurpolymj.2015.09.027

    Article  Google Scholar 

  29. Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 38:1–6. https://doi.org/10.1002/marc.201600628

    Article  Google Scholar 

  30. Yang P, Zhu G, Shen X et al (2016) Poly(ϵ-caprolactone)-based shape memory polymers crosslinked by polyhedral oligomeric silsesquioxane. RSC Adv 6:90212–90219. https://doi.org/10.1039/c6ra20431g

    Article  Google Scholar 

  31. Defize T, Riva R, Raquez JM et al (2011) Thermoreversibly crosslinked poly(ε-caprolactone) as recyclable shape-memory polymer network. Macromol Rapid Commun 32:1264–1269. https://doi.org/10.1002/marc.201100250

    Article  Google Scholar 

  32. Erndt-Marino JD, Munoz-Pinto DJ, Samavedi S et al (2015) Evaluation of the osteoinductive capacity of polydopamine-coated poly(-caprolactone) diacrylate shape memory foams. ACS Biomater Sci Eng 1:1220–1230. https://doi.org/10.1021/acsbiomaterials.5b00445

    Article  Google Scholar 

  33. Dolynchuk O, Kolesov I, Jehnichen D et al (2017) Reversible shape-memory effect in cross-linked linear poly(ϵ-caprolactone) under stress and stress-free conditions. Macromolecules 50:3841–3854. https://doi.org/10.1021/acs.macromol.7b00481

    Article  Google Scholar 

  34. Zou W, Dong J, Luo Y, et al (2017) Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv Mater. https://doi.org/10.1002/adma.201606100

    Article  Google Scholar 

  35. Defize T, Riva R, Jérôme C, Alexandre M (2012) Multifunctional Poly (ε -caprolactone) -forming networks by Diels–Alder cycloaddition: effect of the adduct on the shape-memory properties. Macromol Chem Phys 213:187–197. https://doi.org/10.1002/macp.201100408

    Article  Google Scholar 

  36. Weems AC, Wacker KT, Carrow JK et al (2017) Shape memory polyurethanes with oxidation-induced degradation: in vivo and in vitro correlations for endovascular material applications. Acta Biomater 59:33–44. https://doi.org/10.1016/j.actbio.2017.06.030

    Article  Google Scholar 

  37. Weems AC, Szafron JM, Easley AD et al (2017) Shape memory polymers with enhanced visibility for magnetic resonance- and X-ray imaging modalities. Acta Biomater 54:45–57. https://doi.org/10.1016/j.actbio.2017.02.045

    Article  Google Scholar 

  38. Wang Y, Huang M, Luo Y, Li Y (2010) In vitro degradation of poly(lactide-co-p-dioxanone)-based shape memory poly(urethane-urea). Polym Degrad Stab 95:549–556. https://doi.org/10.1016/j.polymdegradstab.2009.12.016

    Article  Google Scholar 

  39. Véchambre C, Buléon A, Chaunier L et al (2011) Understanding the mechanisms involved in shape memory starch: macromolecular orientation, stress recovery and molecular mobility. Macromolecules 44:9384–9389. https://doi.org/10.1021/ma202019v

    Article  Google Scholar 

  40. Véchambre C, Buléon A, Chaunier L et al (2010) Macromolecular orientation in glassy starch materials that exhibit shape memory behavior. Macromolecules 43:9854–9858. https://doi.org/10.1021/ma101704k

    Article  Google Scholar 

  41. Chen MC, Tsai HW, Chang Y et al (2007) Rapidly self-expandable polymeric stents with a shape-memory property. Macromolecules 8:2774–2780. https://doi.org/10.1021/bm7004615

    Article  Google Scholar 

  42. Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43:254–269. https://doi.org/10.1007/s10853-007-2176-7

    Article  Google Scholar 

  43. Echigo S, Matsuda T, Kamiya T, et al (1990) Development of a new transvenous patent ductus arteriosus occlusion technique using a shape memory polymer. ASAIO J. 36

    Google Scholar 

  44. Hardy JG, Palma M, Wind SJ, Biggs MJ (2016) Responsive biomaterials: advances in materials based on shape-memory polymers. Adv Mater 28:5717–5724. https://doi.org/10.1002/adma.201505417

    Article  Google Scholar 

  45. Wu Y, Wang L, Zhao X et al (2016) Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials 104:18–31. https://doi.org/10.1016/j.biomaterials.2016.07.011

    Article  Google Scholar 

  46. Deng Z, Guo Y, Zhao X et al (2016) Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Acta Biomater 46:234–244. https://doi.org/10.1016/j.actbio.2016.09.019

    Article  Google Scholar 

  47. Zhao X, Dong R, Guo B, Ma PX (2017) Dopamine-Incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability, and enhanced C2C12 myogenic differentiation. ACS Appl Mater Interfaces 9:29595–29611. https://doi.org/10.1021/acsami.7b10583

    Article  Google Scholar 

  48. Xie M, Wang L, Guo B et al (2015) Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation. Biomaterials 71:158–167. https://doi.org/10.1016/j.biomaterials.2015.08.042

    Article  Google Scholar 

  49. Tao J, Hu Y, Wang S et al (2017) A 3D-engineered porous conduit for peripheral nerve repair. Sci Rep 7:1–13. https://doi.org/10.1038/srep46038

    Article  Google Scholar 

  50. Kai D, Tan MJ, Prabhakaran MP et al (2016) Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids Surfaces B Biointerfaces 148:557–565. https://doi.org/10.1016/j.colsurfb.2016.09.035

    Article  Google Scholar 

  51. Cha KJ, Lih E, Choi J et al (2014) Shape-memory effect by specific biodegradable polymer blending for biomedical applications. Macromol Biosci 14:667–678. https://doi.org/10.1002/mabi.201300481

    Article  Google Scholar 

  52. Xie R, Hu J, Hoffmann O et al (2018) Self-fitting shape memory polymer foam inducing bone regeneration: a rabbit femoral defect study. Biochim Biophys Acta Gen Subj 1862:936–945. https://doi.org/10.1016/j.bbagen.2018.01.013

    Article  Google Scholar 

  53. Turnbull G, Clarke J, Picard F et al (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3:278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  Google Scholar 

  54. Xie R, Hu J, Ng F et al (2017) High performance shape memory foams with isocyanate-modified hydroxyapatite nanoparticles for minimally invasive bone regeneration. Ceram Int 43:4794–4802. https://doi.org/10.1016/j.ceramint.2016.11.216

    Article  Google Scholar 

  55. Baker RM, Tseng LF, Iannolo MT et al (2016) Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: a mouse femoral segmental defect study. Biomaterials 76:388–398. https://doi.org/10.1016/j.biomaterials.2015.10.064

    Article  Google Scholar 

  56. Bao M, Lou X, Zhou Q et al (2014) Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA- co -TMC for bone tissue engineering. ACS Appl Mater Interfaces 6:2611–2621. https://doi.org/10.1021/am405101k

    Article  Google Scholar 

  57. Neuss S, Blomenkamp I, Stainforth R et al (2009) The use of a shape-memory poly(ε-caprolactone)dimethacrylate network as a tissue engineering scaffold. Biomaterials 30:1697–1705. https://doi.org/10.1016/j.biomaterials.2008.12.027

    Article  Google Scholar 

  58. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754. https://doi.org/10.1016/j.tcb.2011.09.005

    Article  Google Scholar 

  59. Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly(d, l-lactide)/hydroxyapatite composites. Biomaterials 27:4288–4295. https://doi.org/10.1016/j.biomaterials.2006.03.043

    Article  Google Scholar 

  60. Zhang D, George OJ, Petersen KM et al (2014) A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater 10:4597–4605. https://doi.org/10.1016/j.actbio.2014.07.020

    Article  Google Scholar 

  61. Senatov FS, Niaza KV, Zadorozhnyy MY et al (2016) Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater 57:139–148. https://doi.org/10.1016/j.jmbbm.2015.11.036

    Article  Google Scholar 

  62. Senatov FS, Zadorozhnyy MY, Niaza KV et al (2017) Shape memory effect in 3D-printed scaffolds for self-fitting implants. Eur Polym J 93:222–231. https://doi.org/10.1016/j.eurpolymj.2017.06.011

    Article  Google Scholar 

  63. Woodard LN, Kmetz KT, Roth AA et al (2017) Porous poly(ϵ-caprolactone)-Poly(l-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair. Biomacromolecules 18:4075–4083. https://doi.org/10.1021/acs.biomac.7b01155

    Article  Google Scholar 

  64. Ebara M, Uto K, Idota N et al (2014) The taming of the cell: shape-memory nanopatterns direct cell orientation. Int J Nanomed 9:117–126. https://doi.org/10.2147/IJN.S50677

    Article  Google Scholar 

  65. Mengsteab PY, Uto K, Smith AST et al (2016) Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 86:1–10. https://doi.org/10.1016/j.biomaterials.2016.01.062

    Article  Google Scholar 

  66. Ebara M, Uto K, Idota N et al (2012) Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv Mater 24:273–278. https://doi.org/10.1002/adma.201102181

    Article  Google Scholar 

  67. Davis KA, Burke KA, Mather PT, Henderson JH (2011) Dynamic cell behavior on shape memory polymer substrates. Biomaterials 32:2285–2293. https://doi.org/10.1016/j.biomaterials.2010.12.006

    Article  Google Scholar 

  68. Shou Q, Uto K, Lin WC et al (2014) Near-infrared-irradiation-induced remote activation of surface shape-memory to direct cell orientations. Macromol Chem Phys 215:2473–2481. https://doi.org/10.1002/macp.201400353

    Article  Google Scholar 

  69. Jing X, Mi HY, Huang HX, Turng LS (2016) Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. J Mech Behav Biomed Mater 64:94–103. https://doi.org/10.1016/j.jmbbm.2016.07.023

    Article  Google Scholar 

  70. Zhang H, Wang H, Zhong W, Du Q (2009) A novel type of shape memory polymer blend and the shape memory mechanism. Polymer (Guildf) 50:1596–1601. https://doi.org/10.1016/j.polymer.2009.01.011

    Article  Google Scholar 

  71. Bai Y, Jiang C, Wang Q, Wang T (2013) A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone. Carbohydr Polym 96:522–527. https://doi.org/10.1016/j.carbpol.2013.04.026

    Article  Google Scholar 

  72. Huang WM, Song CL, Fu YQ et al (2013) Shaping tissue with shape memory materials. Adv Drug Deliv Rev 65:515–535. https://doi.org/10.1016/j.addr.2012.06.004

    Article  Google Scholar 

  73. Lendlein A, Kelch S (2005) Shape-memory polymers as stimuli-sensitive implant materials. Clin Hemorheol Microcirc 32:105–116

    Google Scholar 

  74. Serruys PW, Kutryk MJB, Ong ATL (2006) Coronary-artery stents. N Engl J Med 354:483–495. https://doi.org/10.1056/NEJMra051091

    Article  Google Scholar 

  75. Palmaz JC (2004) Intravascular stents in the last and the next 10 years. J Endovasc Ther 11:II-200-II-206. https://doi.org/10.1583/04-1363.1

    Article  Google Scholar 

  76. Hu T, Yang C, Lin S et al (2018) Biodegradable stents for coronary artery disease treatment: Recent advances and future perspectives. Mater Sci Eng, C 91:163–178. https://doi.org/10.1016/j.msec.2018.04.100

    Article  Google Scholar 

  77. Wang R, Zhang F, Lin W et al (2018) Shape Memory properties and enzymatic degradability of poly(ε-caprolactone)-based polyurethane urea containing phenylalanine-derived chain extender. Macromol Biosci 18:1800054. https://doi.org/10.1002/mabi.201800054

    Article  Google Scholar 

  78. Tamai H, Igaki K, Kyo E et al (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404. https://doi.org/10.1161/01.CIR.102.4.399

    Article  Google Scholar 

  79. Venkatraman SS, Tan LP, Joso JFD et al (2006) Biodegradable stents with elastic memory. Biomaterials 27:1573–1578. https://doi.org/10.1016/j.biomaterials.2005.09.002

    Article  Google Scholar 

  80. Nagata M, Inaki K (2011) Biodegradable and photocurable multiblock copolymers with shape-memory properties from poly(ε-caprolactone) diol, poly(ethylene glycol), and 5-cinnamoyloxyisophthalic acid. J Appl Polym Sci 120:3556–3564. https://doi.org/10.1002/app.33531

    Article  Google Scholar 

  81. Xue L, Dai S, Li Z (2010) Biomaterials Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials 31:8132–8140. https://doi.org/10.1016/j.biomaterials.2010.07.043

    Article  Google Scholar 

  82. Lauto A, Ohebshalom M, Esposito M et al (2001) Self-expandable chitosan stent: Design and preparation. Biomaterials 22:1869–1874. https://doi.org/10.1016/S0142-9612(00)00371-9

    Article  Google Scholar 

  83. Bellin I, Kelch S, Langer R, Lendlein A (2006) Polymeric triple-shape materials. Proc Natl Acad Sci 103:18043–18047. https://doi.org/10.1073/pnas.0608586103

    Article  Google Scholar 

  84. Kraitzer A, Kloog Y, Zilberman M (2008) Approaches for prevention of restenosis. J Biomed Mater Res Part B Appl Biomater 85:583–603. https://doi.org/10.1002/jbm.b.30974

    Article  Google Scholar 

  85. Jang HS, Nam HY, Kim JM et al (2009) Effects of curcumin for preventing restenosis in a hypercholesterolemic rabbit iliac artery stent model. Catheter Cardiovasc Interv 74:881–888. https://doi.org/10.1002/ccd.22047

    Article  Google Scholar 

  86. Nakazawa G, Finn AV, Kolodgie FD, Virmani R (2009) A review of current devices and a look at new technology: drug-eluting stents. Expert Rev Med Devices 6:33–42. https://doi.org/10.1586/17434440.6.1.33

    Article  Google Scholar 

  87. Huang S, Wang YY-J, Ge S et al (2010) Quantification of Staphylococcus epidermidis using a wireless, mass-responsive sensor. Sensors Actuat B Chem 150:412–416. https://doi.org/10.1016/j.snb.2010.06.037

    Article  Google Scholar 

  88. Puranik AS, Dawson ER, Peppas NA (2013) Recent advances in drug eluting stents. Int J Pharm 441:665–679. https://doi.org/10.1016/j.ijpharm.2012.10.029

    Article  Google Scholar 

  89. McFadden EP, Stabile E, Regar E et al (2004) Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 364:1519–1521. https://doi.org/10.1016/S0140-6736(04)17275-9

    Article  Google Scholar 

  90. Parker T, Dave V, Falotico R (2010) Polymers for drug eluting stents. Curr Pharm Des 16:3978–3988. https://doi.org/10.2174/138161210794454897

    Article  Google Scholar 

  91. Yang CS, Wu HC, Sun JS et al (2013) Thermo-induced shape-memory PEG-PCL copolymer as a dual-drug-eluting biodegradable stent. ACS Appl Mater Interfaces 5:10985–10994. https://doi.org/10.1021/am4032295

    Article  Google Scholar 

  92. Connolly ES, Rabinstein AA, Carhuapoma JR et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American heart association/American stroke association. Stroke 43:1711–1737. https://doi.org/10.1161/STR.0b013e3182587839

    Article  Google Scholar 

  93. Murayama Y, Viñuela F, Duckwiler GR et al (1999) Embolization of incidental cerebral aneurysms by using the Guglielmi detachable coil system. J Neurosurg 90:207–214. https://doi.org/10.3171/jns.1999.90.2.0207

    Article  Google Scholar 

  94. Rodriguez JN, Clubb FJ, Wilson TS et al (2014) In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model. J Biomed Mater Res Part A 102:1231–1242. https://doi.org/10.1002/jbm.a.34782

    Article  Google Scholar 

  95. Hampikian JM, Heaton BC, Tong FC et al (2006) Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm coils. Mater Sci Eng C 26:1373–1379. https://doi.org/10.1016/j.msec.2005.08.026

    Article  Google Scholar 

  96. Landsman TL, Touchet T, Hasan SM et al (2017) A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent. Acta Biomater 47:91–99. https://doi.org/10.1016/j.actbio.2016.10.008

    Article  Google Scholar 

  97. Rodriguez JN, Clubb FJ, Wilson TS et al (2013) In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model. J Biomed Mater Res Part A 102:1231–1242. https://doi.org/10.1002/jbm.a.34782

    Article  Google Scholar 

  98. Rodriguez JN, Miller MW, Boyle A et al (2014) Reticulation of low density shape memory polymer foam with an in vivo demonstration of vascular occlusion. J Mech Behav Biomed Mater 40:102–114. https://doi.org/10.1016/j.jmbbm.2014.07.037

    Article  Google Scholar 

  99. Small W IV, Gjersing E, Herberg JL et al (2009) Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device. Biomed Eng Online 8:1–7. https://doi.org/10.1186/1475-925X-8-42

    Article  Google Scholar 

  100. Metcalfe A, Desfaits AC, Salazkin I et al (2003) Cold hibernated elastic memory foams for endovascular interventions. Biomaterials 24:491–497. https://doi.org/10.1016/S0142-9612(02)00362-9

    Article  Google Scholar 

  101. Nathan AL, Fletcher GK, Monroe MBB et al (2017) Particulate release from nanoparticle-loaded shape memory polymer foams. J Med Device 11:011009. https://doi.org/10.1115/1.4035547

    Article  Google Scholar 

  102. Landsman TL, Bush RL, Glowczwski A et al (2016) Design and veri fi cation of a shape memory polymer peripheral occlusion device. J Mech Behav Biomed Mater 63:195–206. https://doi.org/10.1016/j.jmbbm.2016.06.019

    Article  Google Scholar 

  103. Wischke C, Neffe AT, Lendlein A (2010) Controlled drug release from biodegradable shape-memory polymers. In: Lendlein A (ed) Shape-memory polym. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 177–205

    Google Scholar 

  104. Peterson GI, Dobrynin AV, Becker ML (2017) Biodegradable Shape Memory Polymers in Medicine. Adv Healthc Mater 6:1700694. https://doi.org/10.1002/adhm.201700694

    Article  Google Scholar 

  105. Wischke C, Neffe AT, Steuer S et al (2010) AB-polymer networks with cooligoester and poly(n-butyl acrylate) segments as a multifunctional matrix for controlled drug release. Macromol Biosci 10:1063–1072. https://doi.org/10.1002/mabi.201000089

    Article  Google Scholar 

  106. Wischke C, Neffe AT, Steuer S, Lendlein A (2010) Comparing techniques for drug loading of shape-memory polymer networks—effect on their functionalities. Eur J Pharm Sci 41:136–147. https://doi.org/10.1016/j.ejps.2010.06.003

    Article  Google Scholar 

  107. Kashif M, Yun BM, Lee KS, Chang YW (2016) Biodegradable shape-memory poly(ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: Sustained drug release and hydrolytic degradation. Mater Lett 166:125–128. https://doi.org/10.1016/j.matlet.2015.12.051

    Article  Google Scholar 

  108. Nagahama K, Ueda Y, Ouchi T, Ohya Y (2009) Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. Biomacromolecules 10:1789–1794. https://doi.org/10.1021/bm9002078

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by UPV/EHU (IT718-13), MINECO (MAT2017-89553-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Vilas-Vilela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruiz-Rubio, L., Pérez-Álvarez, L., Vilas-Vilela, J.L. (2020). Biodegradable Shape-Memory Polymers. In: Parameswaranpillai, J., Siengchin, S., George, J., Jose, S. (eds) Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, vol 115. Springer, Singapore. https://doi.org/10.1007/978-981-13-8574-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8574-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8573-5

  • Online ISBN: 978-981-13-8574-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics