Skip to main content

Polyculture Management: A Crucial System for Sustainable Agriculture Development

  • Chapter
  • First Online:
Soil Health Restoration and Management

Abstract

Polyculture is a system for the cultivation of a few crops together, in the same space and at the same time. These methods of crop production have been known and used for thousands of years. Since the 1970s, the system of intensive agriculture has dominated, and the use of environmentally friendly methods for food and feed production has been limited, as has the use of the polyculture system (PS). This paper presents different methods of PS, and special attention is paid to the importance of methods for sustainable agriculture, with a focus on soil protection and the effect of polyculture on soil fertilities. A special issue presented here are living mulches and companion crops (CC) methods in agriculture and horticulture production. Soil surface cover is an important practice for the slowdown of degradation processes to increase soil fertilities. Polyculture and plant cover (companion crop or living mulches) have many environmental benefits: protection of soil against water and wind erosion, stabilization of soil temperature, reservoir of water in the soil profile, effect on soil fertilities, biological activity, and physical soil characteristics. Living mulches or CC are an element of biological control and compete with weeds and reduce pest attacks and disease infection.

Plant-plant interaction provides important information helpful for species selection for different polyculture systems. Various crop interactions are presented, and crop selections both recommended and not recommended for PS are characterized. Special attention is paid to the role of allelochemicals for species selection.

The polyculture system based on commonly known methods of legume and non-legume crop cultivation. The importance of nitrogen fixation phenomena and ways of nitrogen transport from legume crops to non-legume crops is presented.

Better understanding of the polyculture system benefits and popularization of those crop production methods was the main aim of that chapter. More popular should be agriculture system which has more ecological and environmental impact on both crop-crop and crop-environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

B:

Cloddiness index

CC:

Companion crops

ΔMWD:

Water stability index

LM:

Living mulch

MC:

Mixed cropping

MWDa:

Mean weighed diameter of aggregate (dry method)

MWDg:

Mean weighed diameter of aggregate (wet method)

N:

Nitrogen

N-NO3¯:

Nitrate nitrogen

PS:

Polyculture system

S:

Misting index

W:

Structure index

Wod:

Waterproof

References

  • Abdul-Baki AA, Kotliński S, Kotlińska T (2002a) Vegetable production systems. Veg Crops Res Bull 57:11–21

    Google Scholar 

  • Abdul-Baki AA, Teasdale JR, Goth RW, Haynes KG (2002b) Marketable yields of fresh-market tomatoes grown in plastic and hairy vetch mulches. Hort Sci 37(6):878–881

    Article  Google Scholar 

  • Adamczewska-Sowińska K (2004) Living mulches in tomato and pepper production and their residual effects on celeriac and carrot yields. Zesz Nauk AR we Wrocławiu 484, Rozprawy CCXIII (in Polish, abstract in English)

    Google Scholar 

  • Adamczewska-Sowińska K, Kołota E (2002) Living mulches in field tomato production. Folia Hort 14(1):45–51

    Google Scholar 

  • Adamczewska-Sowińska K, Kołota E, Winiarska S (2009) Living mulches in field cultivation of vegetables. Veg Crops Res Bull 70(1):19–29

    Article  Google Scholar 

  • Akanvou R, Kropff MJ, Bastiaans L, Becker M (2002) Evaluating the use of two contrasting legume species as relay intercrop in upland rice cropping systems. Field Crops Res 74:23–36

    Article  Google Scholar 

  • Altieri MA, Nicholls CI (2012) Agroecology scaling up for food sovereignty and resiliency. In: Lichtfouse E (eds) Sustain Agric Rev 11:1–29

    Google Scholar 

  • Askegaard M, Eriksen J (2008) Residual effect and leaching of N and K in cropping systems with clover and ryegrass catch crops on a coarse sand. Agric Ecosyst Environ 123:99–108

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Baldy C, Stigter CJ (1997) Agrometeorology of multiple cropping in warm climates. INRA, Paris

    Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  Google Scholar 

  • Bargaz A, Isaac ME, Jensen ES, Carlsson G (2015) Intercropping of faba bean with wheat under low water availability promotes faba bean nodulation and root growth in deeper soil layers, procedia. Environ Sci 29:111–112

    Google Scholar 

  • Baumann DT, Kropff MJ, Bastiaans L (2000) Intercropping leeks to suppress weeds. Blackwell Sci. Ltd. Weed Res 40:359–374

    Google Scholar 

  • Beets WC (1982) Multiple cropping and tropical farming system, grower. London, Britain, and West Views Press, Colorado, p 156

    Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions e an update. Pest Manag Sci 63:308–326

    Article  CAS  Google Scholar 

  • Ben-Hammouda M, Ghorbal H, Kremer R, Oueslati O (2001) Allelopathic effects of barley extracts on germination and seedlings growth of bread and durum wheats. Agronomie, EDP Sciences 21(1):65–71

    Article  Google Scholar 

  • Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010) Root exudates mediate kin recognition in plants. Commun Integr Biol 3:28–35

    Article  Google Scholar 

  • Blanco-Canqui H, Lal R (2010) Cropping systems. In: Principles of soil conservation and management. Springer, Dordrecht, pp 165–192

    Chapter  Google Scholar 

  • Błażewicz–Woźniak M, Mitura R (2004) Wpływ uprawy konserwującej na zawartość składników mineralnych w glebie i korzeniach pietruszki. Rocz AR Poznań 356:3–11. (in polish)

    Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Assunta E, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plantmaterials. New Phytol 169:571–578

    Article  CAS  Google Scholar 

  • Boyd NS, Gordon R, Asiedu SK, Martin RC (2000) The effect of living mulches on tuber yield of potato (Solanum tuberosum L.). Biol Agric Hortic 18(3):203–220

    Article  Google Scholar 

  • Brainard DC, Bellinder RR (2004) Weed suppression in a broccoli-winter rye intercropping system. Weed Sci 52:281–290

    Article  CAS  Google Scholar 

  • Brooker RW (2006) Plant–plant interactions and environmental change. New Phytol 171:271–284

    Article  Google Scholar 

  • Brooker RW, Bennett AE, Cong W, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PP, Jones HG, Karley AJ, Li L, McKenzie BM, Pakeman RJ, Paterson E, Schöb C, Shen J, Squire G, Watson CA, Zhang C, Zhang F, Zhang J, White PJ (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117

    Article  Google Scholar 

  • Bruns HA (2012) Concepts in crop rotations. Agric Sci, Godwin Aflakpui (Ed.), InTechopen.com, available from: http://www.intechopen.com/books/agricultural-science/conceptsin-crop-rotation/ dated 03/05/2018

  • Büchi L, Gebhard CA, Liebisch F, Sinaj S, Ramseier H, Charles R (2015) Accumulation of biologically fixed nitrogen by legumes cultivated as cover crops in Switzerland. Plant Soil 393:163–175

    Article  CAS  Google Scholar 

  • Bullock DG (1992) Crop rotation. Crit Rev Plant Sci 11(4):309–326

    Article  Google Scholar 

  • Carof M, de Tourdonnet SP, Saulas P, Le Floch D, Roger-Estrade J (2007) Undersowing wheat with different living mulches in a no-till system. II. Competition for light and nitrogen. Agron Sustain Dev 27:357–365

    Article  Google Scholar 

  • Chalk PM, Peoples MB, Mcneill AM, Boddey RM, Unkovich MJ, Gardener MJ, Silva CF, Chen D (2014) Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol Biochem 73:10–21

    Article  CAS  Google Scholar 

  • Chapagain T, Riseman A (2014) Barley–pea intercropping: effects on land productivity, carbon and nitrogen transformations. Field Crop Res 166:18–25

    Article  Google Scholar 

  • Chapagain T, Riseman A (2015) Nitrogen and carbon transformations, water use efficiency and ecosystem productivity in monocultures and wheat-bean intercropping systems. Nutr Cycl Agroecosyst 101:107–121

    Article  CAS  Google Scholar 

  • Chataway RG, Cooper JE, Orr WN, Cowan RT (2011) The role of tillage, fertiliser and forage species in sustaining dairying based on crops in southern Queensland 2. Double-crop and summer sole-crop systems. Anim Prod Sci 51:904–919

    Article  Google Scholar 

  • Cookson WR, Murphy DV, Roper MM (2008) Characterizing the relationships between soil organic matter components and microbial function and composition along a tillage disturbance gradient. Soil Biol and Biochem 40:763–777

    Article  CAS  Google Scholar 

  • Corre-Hellou G, Fustec J, Crozat Y (2006) Interspecific competition for soil N and its interaction with N-2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant Soil 282:195–208

    Article  CAS  Google Scholar 

  • Cu STT, Hutson J, Schuller KA (2005) Mixed culture of wheat (Triticum aestivum L.) with white lupin (Lupinus albus L.) improves the growth and phosphorus nutrition of the wheat. Plant Soil 272:143–151

    Article  CAS  Google Scholar 

  • Cutforth HW, McGinn SM, McPhee KE, Miller PR (2007) Adaptation of pulse crops to the changing climate of the Northern Great Plains. Agron J 99:1684–1699

    Article  Google Scholar 

  • Czarnota MA, Paul RN, Weston LA, Duke SO (2003) Anatomy of sorgoleone secreting root hairs of Sorghum species. Int J Plant Sci 164(6):861–866

    Article  Google Scholar 

  • Damour G, Garnier E, Navas ML, Dorel M, Risède JM (2015) Using functional traits to assess the services provided by cover plants: a review of potentialities in banana cropping systems. Adv Agron 134:81–133

    Article  Google Scholar 

  • Daudin D, Sierra J (2008) Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestry system. Agric Ecosyst Environ 126:275–280

    Article  CAS  Google Scholar 

  • Debaeke P, Pellerin S, Scopel E (2017) Climate-smart cropping systems for temperate and tropical agriculture: mitigation, adaptation and trade-offs. Cah Agric 26 pp 12 www.cahiersagricultures.fr

    Article  Google Scholar 

  • Deguchi S, Shimazaki Y, Uozumi S, Tawaraya K, Kawamoto H, Tanaka O (2007) White clover living mulch increases the yield of silage corn via arbuscular mycorrhizal fungus colonization. Plant Soil 291:291–299

    Article  CAS  Google Scholar 

  • Deguchi S, Uozumi S, Touno E, Tawaraya K (2010) Potassium nutrient status of corn declined in white clover living mulch. Soil Sci Plant Nutr 56:848–852

    Article  CAS  Google Scholar 

  • Depuydt S (2014) Arguments for and against self and non-self root recognition in plants. Front Plant Sci 5:614

    Article  Google Scholar 

  • Dewar JA (2007) Perennial polyculture farming. Technical report, RAND Corporation occasional paper series. https://www.rand.org/content/dam/rand/pubs/occasional_papers/2007/RAND_OP179.pdf/ dated 30/06/2018

  • Doré T, Sene M, Pellissier F, Gallet C (2004) An agronomic view of allelopathic phenomena. Cah Agric 13:249–256

    Google Scholar 

  • Evans J, Scott G, Lemerle D, Kaiser A, Orchard B, Murray GM, Armstrong EL (2003) Impact of legume ‘break’ crops on the yield and grain quality of wheat and relationship with soil mineral N and crop N content. Aust J Agric Res 54:777–788

    Article  Google Scholar 

  • Falik O, Reides P, Gersani M, Novoplansky A (2003) Self/non-self discrimination in roots. J Ecol 91:525–531

    Article  Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahidb A, Siddiquec K (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67(5):493–506

    Article  CAS  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet JB (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30:57–66

    Article  CAS  Google Scholar 

  • Garrity D, Dixon J, Boffa JM (2012) Understanding African farming systems: science and policy Implications. http://aciar.gov.au/aifsc/sites/default/files/images/understanding_african_farming_systems_report_for_aifsc_conference.pdf/ dated 03/05/2018

  • Ghafarbi SP, Hassannejad S, Lotfi R (2012) Allelopathic effects of wheat seed extracts on seed and seedling growth of eight selected weed species. Int J Agric Crop Sci 19:1452–1457

    Google Scholar 

  • Głąb L, Sowiński J, Bough R, Dayan FE (2017) Allelopathic potential of Sorghum (Sorghum bicolor (L.) Moench) in weed control: a comprehensive review. Adv Agron 145:43–95

    Article  Google Scholar 

  • Gliessman SR (1986) Plant interactions in multiple cropping systens. In: Francis CA (ed) Mubiple crcpping systems. Macmillan Publishing Company, New York, pp 82–95

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877

    Article  CAS  Google Scholar 

  • Gylfadóttir T, Helgadóttir Á, Høgh-Jensen H (2007) Consequences of including adapted white clover in Northern European grassland: transfer and deposition of nitrogen. Plant Soil 297:93–104

    Article  CAS  Google Scholar 

  • Hart JP (2008) Evolving the three sisters: the changing histories of maize, bean, and squash in New York and the greater northeast. Current northeast Paleobotany II. New York state museum bulletin 512:87–99. http://www.nysm.nysed.gov/publications/bulletins/ dated 15/04/2018

  • Hartwig NL, Ammon HU (2002) Cover crops and living mulches. Weed Sci 50(6):688–699

    Article  CAS  Google Scholar 

  • He X, Xu M, Qiu GY, Zhou J (2009) Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118

    Article  Google Scholar 

  • Hernanz JL, Sanchez-Giron V, Navarrete L (2009) Soil carbon sequestration and stratification in a cereal/leguminous crop rotation with three tillage systems in semiarid conditions. Agric Ecosyst Environ 133:114–122

    Article  CAS  Google Scholar 

  • Hiltbrunner J, Liedgens M (2008) Performance of winter wheat varieties in white clover living mulch. Biol Agric Hortic 26:85–101

    Article  Google Scholar 

  • Hiltbrunner J, Streit B, Liedgens M (2007) Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Res 102:163–171

    Article  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    Article  CAS  Google Scholar 

  • Hofmann RW, Lin W, Stilwell SA, Lucas RJ (2007) Comparison of drought resistance in strawberry clover and white clover. Proceed New Zealand Grassland Assoc 69:219–222

    Google Scholar 

  • Ikerd J (2010) Industrialization of agriculture; consequences and challenges of sustainability. Nuffield Scholars Program 2010 Conference, Washington, DC, March 8, 2010. http://web.missouri.edu/ikerdj/papers/Nuffield%20-%20Industrial%20Agriculture.htm/ dated 30/06/2018

  • Jędrszczyk E, Poniedziałek M (2009) Influence of living mulches on selected soil properties and weed infestation in sweet corn cultivation. Zesz Probl Post Nauk Rol 539:265–272. (in Polish with English summary)

    Google Scholar 

  • Jensen ES (1996) Barley uptake of N deposited in the rhizosphere of associated field pea. Soil Biol Biochem 28(2):159–168

    Article  CAS  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2011) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Kankanen H, Eriksson C (2007) Effects of undersown crops on soil mineral N and grain yield of spring barley. Europ J Agron 27:25–34

    Article  CAS  Google Scholar 

  • Kirkegaard JA, Christen O, Krupinsky J, Layzell D (2008) Break crop benefits in temperate wheat production. Field Crops Res 107:185–195

    Article  Google Scholar 

  • Knörzer H, Graeff-Hönninger S, Guo B, Wang P, Claupein W (2009) The rediscovery of intercropping in China: a traditional cropping system for future Chinese agriculture – a review. In: Lichtfouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms, sustainable agriculture reviews. Springer, Dordrecht, pp 13–44

    Chapter  Google Scholar 

  • Kołota E, Adamczewska-Sowińska K (2013) Living mulches in vegetable crops production: perspectives and limitations (a reviev). Acta Sci Pol Hortorum Cultus 12(6):127–142

    Google Scholar 

  • Kumar V, Brainard DC, Bellinder RR (2009) Suppression of Powell amaranth (Amaranthus powellii) by buckwheat residues: role of allelopathy. Weed Sci 57(1):66–73

    Article  CAS  Google Scholar 

  • Latati M, Blavet D, Alkama N, Laoufi H, Drevon JJ, Gérard F, Pansu M, Ounane SM (2014) The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil. Plant Soil 385:181–191

    Article  CAS  Google Scholar 

  • Latati M, Bargaz A, Belarbi B, Lazali M, Benlahrech S, Tellah S, Kaci G, Drevon JJ, Ounane SM (2016) The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur J Agron 72:80–90

    Article  CAS  Google Scholar 

  • Leary J, De Frank J (2000) Living mulches for organic farming system. Hort Technol 10(4):692–698

    Article  Google Scholar 

  • Lesuffleur F, Cliquet JB (2010) Characterization of root amino acid exudation in white clover (Trifolium repens L.). Plant Soil 333:191–201

    Article  CAS  Google Scholar 

  • Lesuffleur F, Paynel F, Bataillé MP, Le Deunff E, Cliquet JB (2007) Root amino acid exudation: measurement of high efflux rates of glycine and serine from six different plant species. Plant Soil 294:235–246

    Article  CAS  Google Scholar 

  • Lesuffleur F, Salon C, Jeudy C, Cliquet JB (2013) Use of a 15N2 labelling technique to estimate exudation by white clover and transfer to companion ryegrass of symbiotically fixed N. Plant Soil 369:187–197

    Article  CAS  Google Scholar 

  • Li W (2001) Agro-ecological farming systems in China. Man and the biosphere series, ed. by Jeffers JNR:26

    Google Scholar 

  • Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang F (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus deficient soils. PNAS 104(27):11192–11196

    Article  CAS  Google Scholar 

  • Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15(12):8933–8952

    Article  CAS  Google Scholar 

  • Liang YL, Zhang CE, Guo DW (2002) Mulch types and their benefit in cropland ecosystems on the loess plateau in China. J Plant Nutr 25(5):945–955

    Article  CAS  Google Scholar 

  • Lithourgidis AS, Vlachostergios DN, Dordas CA, Damalas CA (2011) Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur J Agron 34:287–294

    Article  Google Scholar 

  • Liu TD, Song FB (2012) Maize photosynbthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica 50:215–222

    Article  CAS  Google Scholar 

  • Lu Y, Watkins K, Teasdale JR, Abdul-Baki AA (2000) Cover crops in sustainable food production. Food Rev Int 16:121–157

    Article  Google Scholar 

  • Lucero DW, Grieu P, Guckert A (1999) Effects of water deficit and plant interaction on morphological growth parameters and yield of white clover (Trifolium repens L.) and ryegrass (Lolium perenne L.) mixtures. Eur J Agron 11:167–177

    Article  Google Scholar 

  • Mahapatra SC (2011) Study of grass-legume intercropping system in terms of competition indices and monetary advantage index under acid lateritic soil of India. AJEA 1(1):1–6

    Article  Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:1–10

    Google Scholar 

  • Moyer-Henry KA, Burton JW, Israel DW, Rufty TW (2006) Nitrogen transfer between plants: a 15N natural abundance study with crop and weed species. Plant Soil 282:7–20

    Article  CAS  Google Scholar 

  • Nemecek T, von Richthofen J-S, Dubois G, Casta P, Charles R, Pahl H (2008) Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron 28:380–393

    Article  Google Scholar 

  • Nygren P, Leblanc HA (2015) Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol 35(2):134–147

    Article  CAS  Google Scholar 

  • Okigbo BN, Greenland DJ (1976) Intercropping Systems in Tropical Africa in multiple cropping. ASA Spec Publ 27:63–101

    Google Scholar 

  • Orr CH, Leifert C, Cummings SP, Cooper JM (2012) Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing Bacteria and Total Bacteria are subsidiary to temporal effects. PLoS One 7(12):e52891

    Article  CAS  Google Scholar 

  • Paynel F, Lesuffleur F, Bigot J, Diquélou S, Cliquet JB (2008) A study of 15N transfer between legumes and grasses. Agron Sustain Dev 28:281–290

    Article  CAS  Google Scholar 

  • Pelosi C, Bertrand M, Roger-Estrade J (2009) Earthworm community in conventional, organic and direct seeding with living mulch cropping systems. Agron Sustain Dev 29:287–295

    Article  CAS  Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard-Nielsenm H, Jensen ES (2009) The contributions of nitrogen fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17

    Article  CAS  Google Scholar 

  • Pirhofer-Walzl K, Rasmussen J, Høgh-Jensen H, Eriksen J, Søegaard K, Rasmussen J (2012) Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 350:71–84

    Article  CAS  Google Scholar 

  • Pleasant M (2006) The science behind the three sisters mound system: an agronomic assessment of an indigenous agricultural system in the Northeast. In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier Academic Press, Amsterdam, p 672

    Google Scholar 

  • Pleasant M (2016) Food yields and nutrient analyses of the three sisters: a Haudenosaunee cropping system. Ethnobiology Letters 7(1):87–98

    Article  Google Scholar 

  • Plucknett DL, Smith NJH (1986) Historical perspectives on multiple cropping. Multiple cropping systems (Francis C.A., ed.). Macmillan Publishing Company, pp 20–39

    Google Scholar 

  • Porter JR, Xie L, Challinor V, Cochrane K, Howden SM, Iqbal MM, Lobell DB, Travasso MI (2014) Food security and food production systems. In: Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge/New York, pp 485–533

    Google Scholar 

  • Preissel S, Reckling M, Schläfke N, Zander P (2015) Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: a review. Field Crop Res 175:64–79

    Article  Google Scholar 

  • Prithiviraj B, Paschke MW, Vivanco JM (2007) Root communication: the role of root exudates. Encycl Plant Crop Sci:1–4

    Google Scholar 

  • Ramseier H. Legume screening for cover crops: weed suppression, biomass development and nitrogen fixation. https://www.hafl.bfh.ch/fileadmin/docs/Forschung_Dienstleistungen/Agrarwissenschaften/Pflanzen/Legume_screening_for_cover_crops.pdf/ dated 30/06/2018

  • Rangarajan A (2012) Crop rotation effects on soil fertility and plant nutrition. Chapter in. Production of Crop Rotation on Organic Farms: A Planning Manual was made possible with funding from Sustainable Agriculture Research and Education (SARE). https://www.sare.org/Learning-Center/Books/Crop-Rotation-on-Organic-Farms/Text-Version/Physical-and-Biological-Processes-In-Crop-Production/Crop-Rotation-Effects-on-Soil-Fertility-and-Plant-Nutrition/ dated 17/06/2018

  • Rao VN, Meinke H, Craufurd PQ, Parsons D, Kropff MJ, Anten NPR, Wani SP, Rego TJ (2015) Strategic double cropping on vertisols: a viable rainfed cropping option in the Indian SAT to increase productivity and reduce risk. Eur J Agron 62:26–37

    Article  Google Scholar 

  • Rasmussen J, Søegaard K, Pirhofer-Walzl K, Eriksen J (2012) N2-fixation and residual N effect of four legume species and four companion grass species. Eur J Agron 36:66–74

    Article  CAS  Google Scholar 

  • Rasmussen J, Gylfadóttir T, Loges R, Eriksen J, Helgadóttir A (2013) Spatial and temporal variation in N transfer in grass-white clover mixtures at three Northern European field sites. Soil Biol Biochem 57:654–662

    Article  CAS  Google Scholar 

  • Sainju UM, Singh BP, Whitenhead WF (2002) Long term effects of tillage, cover crops and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia USA. Soil Til Res 63:167–179

    Article  Google Scholar 

  • Sarr B (2012) Present and future climate change in the semi-arid region of West Africa: a crucial input for practical adaptation in agriculture. Atmos Sci Lett 13:108–112

    Article  Google Scholar 

  • Schmidt O, Clements RO, Donaldson G (2003) Why do cereal-legume intercrops support large earthworm populations. Appl Soil Ecol 22(2):181–190

    Article  Google Scholar 

  • Semchenko M, Saar S, Lepik A (2014) Plant root exudates mediate neighbour recognition and trigger complex behavioral changes. New Phytol 204:631–637

    Article  Google Scholar 

  • Sobkowicz P, Podgórska-Lesiak M (2007) Experiments with crop mixtures: interactions, designs and interpretation. EJPAU 10(2). http://www.ejpau.media.pl/volume10/issue2/abs-22.html/

  • Soldevilla-Martinez M, Martin-Lammerding D, Tenorio JL, Walter I, Quemada M, Lizaso JI (2013) Simulating improved combinations tillage-rotation under dryland conditions. Span J Agric Res 11:820–832

    Article  Google Scholar 

  • Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L (2006) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol Fertil Soils 43:565–574

    Article  CAS  Google Scholar 

  • Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, Sun JH, Li L (2007) Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol Fertil Soils 43:565–574

    Article  CAS  Google Scholar 

  • Sowiński J (2004) The effects of tillage method and nitrogen rates on winter wheat harvested for silage and grain. Zesz Nauk AR. Rozprawy CCXVI 490

    Google Scholar 

  • Sowiński J (2005) The influence of winter wheat and white clover bi-cropping system on white clover sward parameters. XX International Grassland Congress Dublin Ireland 26 June-1 July 2005, p 385

    Google Scholar 

  • Sowiński J (2014) The effect of companion crops management on biological weed control in the seeding year of lucerne. Biol Agric Hort 30(2):97–108

    Article  Google Scholar 

  • Sowiński J, Wojciechowski W (2018) Nitrogen efficiency of winter wheat on different tillage methods for whole crops silage. Fresenius Environ Bull 27(1):230–235

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  Google Scholar 

  • Sturite I, Henriksen TM, Breland TA (2007) Winter losses of nitrogen and phosphorus from Italian ryegrass, meadow fescue and white clover in a northern temperate climate. Agric Ecosyst Environ 120:280–290

    Article  CAS  Google Scholar 

  • Thilakarathna RMMS, Papadopoulos YA, Rodd AV (2012) Characterizing nitrogen transfer from red clover populations to companion bluegrass under field conditions. Can J Plant Sci 92:1163–1173

    Article  Google Scholar 

  • Thilakarathna MS, McElroy MS, Chapagain T, Papadopoulos YA, Raizada MN (2016) Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agron Sustain Dev 36:58. https://link.springer.com/article/10.1007%2Fs13593-016-0403-9/

  • Thomsen IK, Christensen BT (2004) Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and ryegrass catch crops. Soil Use Manag 20:432–438

    Article  Google Scholar 

  • Thorsted MD, Olesen JE, Weiner J (2006a) Mechanical control of clover improves nitrogen supply and growth of wheat in winter wheat/white clover intercropping. Eur J Agron 24:149–155

    Article  CAS  Google Scholar 

  • Thorsted MD, Olesen JE, Weiner J (2006b) Width of clover strips and wheat rows influence grain yield in winter wheat/white clover intercropping. Field Crops Res 95:280–290

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Beforta BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108(50):20260–20264

    Article  CAS  Google Scholar 

  • Tittonell P (2015) Agroecology is climate smart. In: climate smart agriculture 2015: global science conference 3, Montpellier (France), p 19

    Google Scholar 

  • Tonitto C, David MB, Drinkwater LE (2006) Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric Ecosyst Environ 112:58–72

    Article  Google Scholar 

  • Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KPC, Gaur PM, Munier-Jolain N, Larmure A, Voisin AS, Sharma HC, Pande S, Sharma M, Krishnamurthy L, Zaman MA (2012) Adaptation of grain legumes to climate change: a review. Agron Sust Dev 32:31–44

    Article  Google Scholar 

  • Vance CP, Graham PH, Allan DL (2000) Biological nitrogen fixation: phosphorus – a critical future need? In: Pedrosa FO, Hungria M, Yates G, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity, current plant science and biotechnology in agriculture. Springer, Dordrecht, pp 509–514

    Google Scholar 

  • Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, Cambridge, p 237

    Book  Google Scholar 

  • Vandermeer J, Van Noordwijk M, Anderson J, Ong C, Perfecto I (1998) Global change and multispecies ecosystems: concepts and issues. Agric Ecosyst Environ 67:1–22

    Article  Google Scholar 

  • Waha K, Müller C, Bondeau A, Dietrich JP, Kurukulasuriya P, Heinke J, Lotze-Campen H (2013) Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob Environ Chang 23:130–143

    Article  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    Article  CAS  Google Scholar 

  • Wojciechowski W, Adamczewska-Sowińska K, Krygier M (2012) Effect of living mulches on selected soil structure indicators in eggplant cultivation. Veg Crops Res Bull 77:49–59

    Google Scholar 

  • Xiao YB, Li L, Zhang FS (2004) Effect of root contact on interspecific competition and N transfer between wheat and fabacean using direct and indirect N-15 techniques. Plant Soil 262:45–54

    Article  CAS  Google Scholar 

  • Xu Z, Ma G, Shah RP, Qin FF (2008) Japanese organic tomato intercropped with living turfgrass mulch. Cultivating the future based on science. Volume 1: Organic Crop Production. Proceedings of the Second Scientific Conference of the International Society of Organic Agriculture Research (ISOFAR). Modena, Italy, 18–20 June 2008, pp 619–623

    Google Scholar 

  • Xu Z, Yu Z, Zhao J (2013) Theory and application for the promotion of wheat production in China: past, present and future. J Sci Food Agric 93:2339–2350

    Article  CAS  Google Scholar 

  • Yang F, Huang S, Gao RC, Liu WG, Yong TW, Wang XC, Wu XL, Yang WY (2014) Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red far-red ratio. Field Crops Res 155:245–253

    Article  Google Scholar 

  • Yong T, Liu X, Yang F Song C, Wang X, Liu W, Su B, Zhou L, Yang W (2015) Characteristics of nitrogen uptake, use and transfer in a wheat-maize-soybean relay intercropping system. Plant Prod Sci 18:388–397

    Article  CAS  Google Scholar 

  • Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Józef Sowiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamczewska-Sowińska, K., Sowiński, J. (2020). Polyculture Management: A Crucial System for Sustainable Agriculture Development. In: Meena, R. (eds) Soil Health Restoration and Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-8570-4_8

Download citation

Publish with us

Policies and ethics