Advertisement

Conservation Agriculture Practices to Improve the Soil Water Management and Soil Carbon Storage in Mediterranean Rainfed Agro-Ecosystems

  • Iván Francisco García-Tejero
  • Rosa Carbonell
  • Rafaela Ordoñez
  • Francisco Perea Torres
  • Víctor Hugo Durán ZuazoEmail author
Chapter

Abstract

Water is the most limiting natural resource in agro-ecosystems of arid and semi-arid environments. In this regard, many areas of Southern Europe and other countries with similar climatic characteristic are being affected by the climate change, and many efforts oriented to achieve the sustainability of agriculture are being developed. Water limitations are forcing to implement different strategies to improve the water usage in agriculture, with significant constraints for the case of rainfed systems, where the improvement of water management must be focused to those soil management systems able to increase the soil water holding capacity. Implementing conservation agriculture (CA) practices such as minimum tillage (MT), direct drilling (DD), or the use of cover crops in perennial systems allows to improve the soil water retention and the its disposal for the crop during the maximum evapotranspiration period. Additionally, CA not only implies management strategies focused to climate change adaptation but also mitigation, encouraging the role of soil as a carbon sink. This work summarizes the advantages of these strategies, focusing on the effects of DD versus conventional tillage (CT) in rainfed systems for annual crops in terms of soil water conservation and carbon storage. On overall, DD practices allow to retain more water in the soil profile, as in the first centimetres as in the deeper zones of soil profile, with a faster soil water depletion in CT plots Moreover, significant higher CO2 emissions are promoted in CT systems in comparison to DD, in which the soil acts as a potential carbon sink. In conclusion, CA practices can act with a double role: as mitigation and as adaptation strategies to climate change.

Keywords

Direct drill Conventional tillage Soil water dynamic Soil physical properties 

Abbreviations

AOC

Active organic carbon

CA

Conservation agriculture

DD

Direct drill

FC

Field capacity

GHG

Greenhouse emission gasses

MCP

Multi-sensor capacitance probes

MT

Minimum tillage

OM

Organic matter

PWP

Permanent wilting point

SOC

Soil organic carbon

SWAP

Soil water atmosphere plant

ρb

Bulk density

References

  1. Ahuja LR, Naney RE, Green RE, Nielsen DR (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci Soc Am J 48:699–702CrossRefGoogle Scholar
  2. Ahuja LR, Cassel DK, Bruce RR, Barnes BB (1989) Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci 148:404–411CrossRefGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration —guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56. Food and Agriculture Organization, RomeGoogle Scholar
  4. Almaraz JJ, Zhou XM, Mabood F, Madramootoo C, Rochette P, Ma BL, Smith DL (2009) Greenhouse gas fluxes associated with soybean production under two tillage systems in southwestern Quebec. Soil Tillage Res 104(1):134–139CrossRefGoogle Scholar
  5. Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441Google Scholar
  6. Ball BC, Lang RW, Robertson EAG, Franklin MF (1994) Crop performance and soil conditions on imperfectly drained loams after 20–25 years of conventional tillage or direct drilling. Soil Tillage Res 31:97–118CrossRefGoogle Scholar
  7. Bescana P, Imaz MJ, Virto I, Enrique A, Hoogmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res 87:19–27CrossRefGoogle Scholar
  8. Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res.  https://doi.org/10.1071/SR17001 CrossRefGoogle Scholar
  9. Cambardella CA, Elliot ET (1992) Particulate soil organic matter change across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783CrossRefGoogle Scholar
  10. Carbonell-Bojollo R, González-Sánchez E, Veróz-González O, Ordóñez-Fernández R (2011) Soil management systems and short-term CO2 emissions in a clayey soil in southern Spain. Sci Total Environ 409:2929–2935CrossRefGoogle Scholar
  11. Carbonell-Bojollo R, González-Sánchez E, Repullo-Ruibérriz de Torres M, Ordóñez-Fernández R, Domínguez-Jiménez J, Basch G (2015) Soil organic fractions under conventional and no-till management in a long-term study in southern Spain. Soil Res 53:113–124CrossRefGoogle Scholar
  12. Christian DG, Bacon EGT (1990) A long-term comparison of ploughing, tine cultivation and direct drilling on the growth and yield of winter cereals and oilseed rape on clayey and silty soils. Soil Tillage Res 18:311–331CrossRefGoogle Scholar
  13. Ciais P(2013) The physical science basis. Contribution of working group to the fifth Assessment report of the Intergovernmental panel on climate change (eds Stocker TF et al.) pp 465–470Google Scholar
  14. Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378Google Scholar
  15. Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57CrossRefGoogle Scholar
  16. Dao TH (1996) Tillage system and crop residue effects on surface compaction of a Paleustoll. Agron J 88:141–148CrossRefGoogle Scholar
  17. Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017a) Multi-function role as nutrient and scavenger of free radical in soil. Sustain MDPI:402.  https://doi.org/10.3390/su9081402 CrossRefGoogle Scholar
  18. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 1163(9):1–18.  https://doi.org/10.3390/su9071163 CrossRefGoogle Scholar
  19. Derpsch R (2005) The extent of conservation agriculture adoption worldwide: implications and impact. In: Proceedings 3rd World Congress on Conservation Agriculture, Nairobi, p 15. pp (CD-Rom)Google Scholar
  20. Dexter AR (1988) Advances in characterization of soil structure. Soil Tillage Res 11:199–238CrossRefGoogle Scholar
  21. Dexter AR (2004) Soil physical quality. Part I. theory, effects of soil texture, density, and organic matter on root growth. Geoderma 120:201–214CrossRefGoogle Scholar
  22. Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482Google Scholar
  23. Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum res 39(4):590–594Google Scholar
  24. Dhruw SK, Singh LJ, Singh AK (2009) Storage and sequestration of carbon by leguminous and non-leguminous trees on red lateritic soil of Chhattisgarh. Indian Forester 135(4):531–538Google Scholar
  25. Fernández C (1997) Historia y evolución de los sistemas de laboreo. El laboreo de Conservación. Cap 1. In: Torres LG, y Fernández PG (eds) Agricultura de Conservación: Fundamentos Agroquímicos, Medioambientales y Económicos. Asociación española del laboreo de conservación/Suelos Vivos, Córdoba, EspañaGoogle Scholar
  26. Friedrich T, Derpsch R, Kassam A (2012) Global overview of the spread of conservation agriculture Field and actuarial science reports. Available in: http://aciar.gov.au/files/node/13993/ Google Scholar
  27. Fustec J, Lesuffleur F, Mahieu S, Cliquet JB (2010) Nitrogen rhizodeposition of legumes: a review. Agron Sustain Dev 30:57–66CrossRefGoogle Scholar
  28. García-Tejero I, Jiménez JA, Martínez G, Vanderlinden K, Muriel JL, Perea F (2007b) Conservación y disponibilidad del agua en el suelo en función del tipo de laboreo. Vida Rural, vol 251, pp 29–31Google Scholar
  29. García-Tejero IF, Espejo AJ, Martínez G, Vanderlinden K, Durán ZVH, Muriel JL (2009) Efectos del laboreo en la curva de retención hídrica de un suelo bajo diferentes sistemas de manejo. Vida Rural 297:32–37Google Scholar
  30. García-Tejero IF, Durán ZVH, Rodríguez CR, Muriel FJL (2011) Water and sustainable agriculture, Springerbriefs in Agriculture, 94 pCrossRefGoogle Scholar
  31. García-Tejero IF, Durán ZVH, Muriel FJL (2014) Towards sustainable irrigated Mediterranean agriculture: implications for water conservation in semi-arid environments. Water Int 39:635–648CrossRefGoogle Scholar
  32. Ghanbari A, Dahmardeh M, Siahsar BA, Ramroudi M (2010) Effect of maize (L.) – cowpea (Vigna unguiculata L.) intercropping on light distribution, soil temperature and soil moisture in arid environment. J Food Agric Environ 8:102–108Google Scholar
  33. Hammel JE (1989) Long term tillage and crop rotation effects on bulk density and soil impedance in northern Idaho. Soil Sci Soc Am J 53:1515–1519CrossRefGoogle Scholar
  34. Hatfield JL, Sauer TJ, Prueger JH (2001) Managing soils to achieve greater water use efficiency: a review. Agron J 93:271–280CrossRefGoogle Scholar
  35. Hauggaard-Nielsen H, Jornsgaard B, Kinane J, Jensen ES (2007) Grain legume–cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew Agric Food Syst 23:3–12CrossRefGoogle Scholar
  36. Hillel D (1998) Chapter 5: Soil structure and aggregation. In: Environmental soil Physics. Academic, London, pp 101–126Google Scholar
  37. Iglesias A, Garrote L (2018) Local and corrective actions for adaptation to use less water for agriculture in the Mediterranean region. In: Garcia Tejero IF, DuránZuazo VH (eds) Water scarcity and sustainable agriculture in semiarid environment: tools, strategies and challenges for woody crops. Academic, Oxford, pp 73–84CrossRefGoogle Scholar
  38. IPCC (2014) Climate change: impacts, adaptations and vulnerabilities. Part B. Regional aspects (Barros V, Field CB, eds). Cambridge University Press, 688 pGoogle Scholar
  39. Jiménez JA, García-Tejero I, Vanderlinden K, Perea F, Muriel JL (2005) Balance de agua en suelos arcillosos bajo laboreo convencional y siembra directa. In: Actas Congreso Internacional sobra Agricultura de Conservación; Córdoba, Spain. Asociación Española Agricultura de Conservación/Suelos Vivos, Federación Europea Agricultura de Conservación, Diputación de Córdoba. pp. 397–402Google Scholar
  40. Kassam A, Derpsch R, Friedrich T (2014) Global achievements in soil and water conservation: the case of conservation agriculture. Int Soil Water Cons Res 2(1):5–13CrossRefGoogle Scholar
  41. Kassam A, Friedrich T, Derpsch R, Lahmar R, Mrabet R, Basch G, González- Sánchez EJ, Serraj R (2012) Conservation agriculture in the dry Mediterranean climate. Field Crop Res 132:7–17CrossRefGoogle Scholar
  42. Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12:1–15CrossRefGoogle Scholar
  43. Kertész A, Madarász B (2014) Conservation agriculture in Europe. Int Soil Water Conserv Res 2:91–96CrossRefGoogle Scholar
  44. Kirkby CA, Richardson EA, Wade JL, Batten DG, Blanchard C, Kirkegaard AJ (2013) Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol Biochem 60:77–86CrossRefGoogle Scholar
  45. Kumar S, Sheoran S, Kumar SK, Kumar P, Meena RS (2016) Drought: a challenge for Indian farmers in context to climate change and variability. Progress Res Int J 11:6243–6246Google Scholar
  46. Kumar S, Meena RS, Pandey A, Seema (2017a) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microb Appl Sci 6(3):2566–2573CrossRefGoogle Scholar
  47. Kumar S, Meena RS, Yadav GS, Pandey A (2017b) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9CrossRefGoogle Scholar
  48. Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76Google Scholar
  49. La Jeunesse I, Cirelli C, Aubin D, Larrue C, Soddu A (2016) Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale. Sci Total Environ Part B 543:981–996CrossRefGoogle Scholar
  50. Lars JM, Per S, Karl JR, Kari T (2003) Spatial and temporal effects of direct drilling on soil structure in the seedling environment. Soil Tillage Res 71:163–173CrossRefGoogle Scholar
  51. Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5:396–410Google Scholar
  52. López-Bellido RJ, López BL, Benítez EJ, BFJ L (2007) Tillage system, preceding crop, and nitrogen fertilizer in wheat crop I. Soil water content. Agron J 99:59–65CrossRefGoogle Scholar
  53. Lorite IJ, Ruiz RM, Gabaldón LC, Cruz BM, Porras R, Santos C (2018) Water management and climate change in semiarid environments. In: García-Tejero IF, Durán-Zuazo VH (eds) Water scarcity and sustainable agriculture in semiarid environment: tools, strategies and challenges for woody crops. Academic Press-Elsevier, Amsterdam, pp 3–40CrossRefGoogle Scholar
  54. Lowther WL, Horrell RF, Fraser WJ, Trainor KD, Johnstone PD (1996) Effectiveness of a strip seeder direct drill for pasture establishment. Soil Tillage Res 38:161–174CrossRefGoogle Scholar
  55. Macedo MO, Campello EFC, Andrade AG, de FSM (2006) Establishment of legume trees on heaps of blast furnace slag. Floresta Ambiente 13:20–25Google Scholar
  56. Macedo MO, Resende AS, Garcia PC, Boddey RM, Jantalia CP, Urquiaga S, Campello EFC, Franco AA (2008) Changes in soil C and N stocks and nutrient dynamics 13 years after recovery of degraded land using leguminous nitrogen-fixing trees. For Ecol Manag 255:1516–1524CrossRefGoogle Scholar
  57. Márquez-García F, González SEJ, Castro GS, Ordóñez-Fernández R (2013) Improvement of soil carbon sink by cover crops I olive orchards under semiarid conditions. Influence of the type of soil and weed. Span J Agric Res 11:335–346CrossRefGoogle Scholar
  58. Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Botany 46(1):241–244Google Scholar
  59. Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J App Nat Sci 6(2):344–348CrossRefGoogle Scholar
  60. Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797Google Scholar
  61. Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western dry zone of India. Bangladesh J Bot 43(2):169–173CrossRefGoogle Scholar
  62. Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. Am J Exp Agric 8(3):159–166Google Scholar
  63. Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  64. Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  65. Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515CrossRefGoogle Scholar
  66. Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015e) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western dry zone of India. Am J Exp Agric 7(3):170–177Google Scholar
  67. Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J App Nat Sci 8(2):715–718CrossRefGoogle Scholar
  68. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260CrossRefGoogle Scholar
  69. Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359CrossRefGoogle Scholar
  70. Meena RS, Kumar S, Pandey A (2017b) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227Google Scholar
  71. Meena RS, Meena PD, Yadav GS, Yadav SS (2017c) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158CrossRefGoogle Scholar
  72. Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018a) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Leg Res 41(4):563–571Google Scholar
  73. Meena RS, Kumar V, Yadav GS, Mitran T (2018b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: A review. Plant Growth Regul 84:207–223CrossRefGoogle Scholar
  74. Moreno F, Murillo JM, Madejón E, Girón IF, Pelegrín F (2005) Laboreo de conservación: efectos a largo plazo sobre la calidad del suelo. In: Libro de Actas del Congreso Internacional de Agricultura de Conservación. AEAC-SV, FEAC, Diputación de Córdoba (eds). , 515–520 ppGoogle Scholar
  75. Muriel JL, Vanderlinden K, Perea F, Jiménez JA, García-Tejero I, Pérez JJ (2005) Régimen hídrico en suelos arcillosos de campiña sometidos a distintos sistemas de manejo. In: Actas Congreso Internacional sobre. Agricultura de Conservación, Córdoba, España, pp 537–542Google Scholar
  76. Nelson DW, Sommer LE (1982) Total carbon, organic carbon and organic matter. In: Page RH, Keeny DR (eds) Methods of soil analysis, II. Chemical and microbiological properties, 2nd edn. Soil Science Society of America, MadisonGoogle Scholar
  77. Oorts K, Merckx R, Grehan E, Labreuche E, Nicolardot B (2007) Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France. Soil Tillage Res 95:133–148CrossRefGoogle Scholar
  78. Ordoñez R, González FP, Giráldez JV, Perea F (2007) Soil properties and crop yields alter 21 years of direct drilling trials in southern Spain. Soil Tillage Res 94:47–54CrossRefGoogle Scholar
  79. Oyonarte C, Mingorance M, Durante P, Piñeiro G, Barahona E (2007) Indicators of change in the organic matter in arid soils. Sci Total Environ 378:133–137CrossRefGoogle Scholar
  80. Paustian K, Lehmann J, Ogle S, Reasy D, Robertson P, Smith P (2016) Climate-smart soils. Nature.  https://doi.org/10.1038/nature17174 CrossRefGoogle Scholar
  81. Pelegrin F, Moreno F, MartínAJ CM (1990) The influence of tillage methods on soil physical properties and water balance for a typical crop rotation in SW Spain. Soil Tillage Res 16:345–358CrossRefGoogle Scholar
  82. Perea F (2000) Agronomía del laboreo de conservación en los vertisuelos de la campiña andaluza. Unpublished PhD dissertation. Department of Agronomy, University of Cordoba, Cordoba, SpainGoogle Scholar
  83. Perea F, Jiménez JA, García-Tejero I, Vanderlinden K, Muriel JL (2006) Caracterización hidroclimática en vertisuelos de la campiña de Carmona. CAREL4:389–1407Google Scholar
  84. Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43(3):367–370CrossRefGoogle Scholar
  85. Raper RL, Reeves DW, Burmester CH, Schwab EB (2000) Tillage depth, tillage timing and cover crop effects on cotton yield, soil strength and tillage energy requirements. Appl Eng Agric 16:379–385CrossRefGoogle Scholar
  86. Ratnadass A, Blanchard E, Lecompte P (2013) Ecological interactions within the biodiversity of cultivated systems. In: Hainzelain (ed) Cultivating biodiversity to transform agriculture. Quae, Cirad, pp 141–179CrossRefGoogle Scholar
  87. Richard G, Boiffin J, Duval Y (1995) Direct drilling of sugar beet (Beta vulgaris L.) into a cover crop: effects on soil physical conditions and crop establishment. Soil Tillage Res 34:169–185CrossRefGoogle Scholar
  88. Richard G, Cousin I, Sillon JF, Bruand A, Guérif J (2001) Effect of compaction on the porosity of a silty soil: influence on unsaturated hydraulic properties. Eur J Soil Sci 52:49–58CrossRefGoogle Scholar
  89. Roseberg RJ, McCoy EL (1992) Tillage and traffic-induced changes in macroporosity and macropore community: air permeability assessment. Soil Sci Soc Am J 56:1261–1267CrossRefGoogle Scholar
  90. Schaap MG, Leij FJ, van Geuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176CrossRefGoogle Scholar
  91. Shaver TM, Peterson GA, Ahuja LR, Westfall DG, Sherrod LA, Dunn G (2002) Surface soil physical properties after twelve years of dryland no-till management. Soil Sci Soc Am J 66:1296–1303CrossRefGoogle Scholar
  92. Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L) cultivars. The Ecoscan 9(1–2):517–519Google Scholar
  93. Soane BD, Ball BC (1998) Review of management and conduct of long-term tillage studies with special reference to a 25-yr experiment on barley in Scotland. Soil Tillage Res 45:17–37CrossRefGoogle Scholar
  94. Suwardji P, Eberbach PL (1998) Seasonal changes of physical properties of an OxicPaleustalf (Red Kandosol) after 16 years of direct drilling or conventional cultivation. Soil Tillage Res 49:65–77CrossRefGoogle Scholar
  95. USDA (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys, 2nd ed. Agricultural Handbook 436. US Government Printing Office, Washington (DC)Google Scholar
  96. Varma D, Meena RS, Kumar S (2017a) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan region, India. Int J Chem Stu 5(2):384–389Google Scholar
  97. Varma D, Meena RS, Kumar S, Kumar E (2017b) Response of mungbean to NPK and lime under the conditions of Vindhyan region of Uttar Pradesh. Legum Res 40(3):542–545Google Scholar
  98. Vercauteren M (2013) Impact of conservation agriculture (CA) on water conservation and yield in Nanyuki, Kenia. Master’s dissertation of Science in bioscience engineering: Agriculture. Gent University, 62 pp. Available at: https://lib.ugent.be/fulltxt/RUG01/002/063/597/RUG01-002063597_2013_0001_AC.pdf
  99. Verma JP, Jaiswal DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  100. Verma JP, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794CrossRefGoogle Scholar
  101. Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015c) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442CrossRefGoogle Scholar
  102. Wani NR, Qaisar KN (2014) Carbon percent in different components of tree species and soil organic carbon pool under these tree species in Kashmir valley. Curr World Environ 9(1):174–181CrossRefGoogle Scholar
  103. Wilkes A, Tennigkeit T, Solymosi K (2013) National integrated mitigation planning in agriculture: a review paper. FAO, RomeGoogle Scholar
  104. Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169Google Scholar
  105. Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017b) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol Indic. http://www.sciencedirect.com/science/article/pii/S1470160X17305617
  106. Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das LJ, Saha P (2017c) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37CrossRefGoogle Scholar
  107. Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018a) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157CrossRefGoogle Scholar
  108. Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018b) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the north eastern Himalayan region of India. Arch Agron Soil Sci.  https://doi.org/10.1080/03650340.2018.1423555 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Iván Francisco García-Tejero
    • 1
  • Rosa Carbonell
    • 2
  • Rafaela Ordoñez
    • 2
  • Francisco Perea Torres
    • 1
  • Víctor Hugo Durán Zuazo
    • 3
    Email author
  1. 1.Centro IFAPA “Las Torres-Tomejil”SevilleSpain
  2. 2.Centro IFAPA “Alameda del Obispo”CórdobaSpain
  3. 3.Centro IFAPA “Camino de Purchil”GranadaSpain

Personalised recommendations