Skip to main content

Relevance of Microbial Diversity in Implicating Soil Restoration and Health Management

  • Chapter
  • First Online:
Soil Health Restoration and Management
  • 991 Accesses

Abstract

Soil comprises three interconnected factors responsible for its fertility including physical, chemical, and biological. The soil fertility depends upon the diversity of living microorganisms in the soil and their interaction with other physicochemical components, which accounts for their higher complexity and dynamic behavior. It has been documented as the well-understood component for soil fertility. Along with maintaining the soil fertility, soil microorganisms also impart essential roles in the nutrient biogeochemical cycles that are the fundamentals of life on the earth. A small amount of soil exhibits a great deal of microbial diversity, which includes bacteria, actinomycetes, fungi, algae, and protozoa. Bacteria comprise dominating population in the soil followed by actinomycetes, fungi, algae, and protozoa. It has been reported that one gram of soil may contain 109–1010 prokaryotes including bacteria-archaea and actinomycetes, 104–107 protists, ∼100 m of fungal hyphae, and 108–109 viruses. The rhizosphere, a narrow zone influenced by plant roots, provides an active habitat for abundant microbes and is considered as one of the most complex ecosystems on the earth. To improve soil health and plant growth performance, it is important to know about the occurrence of diverse microbes and their behavior and role in the rhizosphere microbiome. Moreover, the ability of root exudates for mediating plant–microbe and plant–microbiome interactions could maintain agricultural practices sustainable. This chapter explores the utility and functioning of soil microbial diversity in terms of its agricultural relevance and subsequent increased crop production so that the growing world population scenario could conquer. The microbial population has not been promoted effectively in agricultural practices till date because several beneficial soil microbes are still not explored. So, the chapter insights the various modern molecular tools that will provide an opportunity to discover new species currently unknown to science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SOM:

Soil organic matter

DOM:

Dissolved organic matter

C:

Carbon

CLPP:

Community level physiological profile

SCSU:

Sole-carbon-source utilization

CSUP:

Carbon substrate utilization profiles

TTC:

Triphenyl tetrazolium chloride

DGGE:

Denaturing gradient gel electrophoresis

MPN:

Most probable number

FAME:

Fatty acid methyl ester

PLFA:

Phospholipid fatty acid

DNA:

Deoxyribonucleic acid

ARDRA:

Amplified ribosomal DNA restriction analysis

Co:

DNA concentration

t:

Incubation time

MATE:

Multidrug and toxic compound extrusion

PGPR:

Plant-growth-promoting rhizobacteria

QS:

Quorum sensing

IVET:

In vivo expression technology

AMF:

Arbuscular mycorrhizal fungi

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641. https://doi.org/10.4161/psb.20039

    Article  CAS  Google Scholar 

  • Agrawal PK, Agrawal S, Shrivastava R (2015) Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech 5:853–866. https://doi.org/10.1007/s13205-015-0289-2

    Article  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant Sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827. https://doi.org/10.1038/nature03608

    Article  CAS  Google Scholar 

  • Akkermans ADL, van Elsas JD, de Bruijn FJ (1995) Molecular microbial ecology manual. Kluwer, Dordrecht

    Book  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Arias ME, González-Pérez JA, González-Vila FJ, Ball AS (2005) Soil health: a new challenge for microbiologists and chemists. Int Microbiol 8:13–21

    CAS  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Article  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Cummings Publishing Company, Benjamin, pp 281–324

    Google Scholar 

  • Azcarate-Peril MA, Tallon R, Klaenhammer TR (2009) Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J Dairy Sci 92:870–886

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x. PMID: 19143988

    Article  CAS  Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273. https://doi.org/10.1111/nph.12124. PMID: 23347044

    Article  CAS  Google Scholar 

  • Baldock J (2007) Composition and cycling of organic carbon in soil. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, pp 1–36

    Google Scholar 

  • Banowetz GM, Whittaker GW, Dierksen KP, Azevedo MD, Kennedy AC, Griffith SM, Steiner JJ (2006) Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual 3:133–140

    Article  CAS  Google Scholar 

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743

    Article  CAS  Google Scholar 

  • Bej AK, Perlin M, Atlas RM (1991) Effect of introducing genetically engineered microorganisms on soil microbial diversity. FEMS Microbiol Ecol 86:169–175

    Article  Google Scholar 

  • Bertaux J, Gloger U, Schmid M, Hartmann A, Scheu S (2007) Routine fluorescence in situ hybridization in soil. J Microbiol Methods 69:451–460

    Article  CAS  Google Scholar 

  • Bertilsson S, Cavanaugh CM, Polz MF (2002) Sequencing-independent method to generate oligonucleotide probes targeting a variable region in bacterial 16S rRNA by PCR with detachable primers. Appl Environ Microbiol 68:6077–6086

    Article  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66. https://doi.org/10.1186/1475-2859-13-66

    Article  Google Scholar 

  • Bhat AK (2013) Preserving Microbial diversity of Soil ecosystem: a key to sustainable productivity. Int J Curr Microbiol Appl Sci 2:85–101

    Google Scholar 

  • Bhatia U, Robison K, Gilbert W (1997) Dealing with database explosion: a cautionary note. Science 276:1724–1725

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A lipid method of total lipid extraction and purification. Can J Biochem 37:911–917

    CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5(7):566–582

    Article  CAS  Google Scholar 

  • Bossio DA, Scow KM (1995) Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl Environ Microbiol 61:4043–4050

    CAS  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278

    Article  CAS  Google Scholar 

  • Boughner L, Singh P (2016) Microbial ecology: where are we now? Postdoc J 4(11):3–17. https://doi.org/10.14304/surya.jpr.v4n11.2

    Article  Google Scholar 

  • Brady NC, Weil RR (2014) The nature and properties of soils. Pearson Education Limited, Harlow

    Google Scholar 

  • Braga RM, Dourado MN, Araujo WL (2016) Microbial interactions: ecology in a molecular perspective. BJM 47:86–98

    CAS  Google Scholar 

  • Brodie EL, De Santis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72(9):6288–6298. https://doi.org/10.1128/AEM.00246-06

    Article  CAS  Google Scholar 

  • Brodie EL, De Santis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci 104(1):299–304. https://doi.org/10.1073/pnas.0608255104

    Article  CAS  Google Scholar 

  • Broughton LC, Gross K (2000) Patterns of diversity in plant soil microbial communities along a productivity gradient in a michigan old-field. Oecologia 125:420–427

    Article  CAS  Google Scholar 

  • Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987

    Article  CAS  Google Scholar 

  • Brussard L, de Ruiter PC, Brown GC (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244

    Article  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, SchulzeLefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Buyer JS, Sasser M (2012) High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130

    Article  Google Scholar 

  • Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J Microbiol Methods 30:33–41

    Article  Google Scholar 

  • Cassidy MB, Leung KT, Lee H, Trevors JT (2000) A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. J Microbiol Methods 40:135–145

    Article  CAS  Google Scholar 

  • Castan˜eda LE, Barbosa O (2017) Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5:e3098. https://doi.org/10.7717/peerj.3098

    Article  CAS  Google Scholar 

  • Centifanto YM, Silaver WS (1964) Leaf-nodule symbiosis endophyte of Psychotria bacteriophila. J Bacteriol 88(3):776–781

    CAS  Google Scholar 

  • Chandler DP, Brockman FJ, Fredrickson JK (1997a) A Use of 16S rDNA clone libraries to study changes in a microbial community resulting from ex-situ perturbation of a subsurface sediment. FEMS Microbiol Rev 20:217–230

    Article  CAS  Google Scholar 

  • Chandler DP, Li SM, Spadoni CM, Drake GR, Balkwill DL, Fredrickson JK, Brockman FJ (1997b) A molecular comparison of culturable aerobic heterotrophic bacteria and 16S rDNA clones derived from a deep subsurface sediment. FEMS Microbiol Ecol 23:131–144

    Article  CAS  Google Scholar 

  • Chandna P, Nain L, Singh S, Kuhad RC (2013) Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiol 13:99–113. https://doi.org/10.1186/1471-2180-13-99

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2013) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803. https://doi.org/10.1038/ismej.2013.196

    Article  CAS  Google Scholar 

  • Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1:24. https://doi.org/10.1371/journal.pcbi.0010024

    Article  CAS  Google Scholar 

  • Cho JC, Tiedje JM (2001) Bacterial species determination from DNA–DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 67:3677–3682

    Article  CAS  Google Scholar 

  • Choudhary DK, Agarwal PK, Johri BN (2009) Evaluation of in situ functional activity of casing soils during growth cycle of mushroom (Agaricus bisporus (Lange) Imbach) employing community level physiological profiles (CLPPs). Indian J Microbiol 50(1):19–26

    Article  CAS  Google Scholar 

  • Clegg CD, Ritz K, Griffiths BS (2000) %G+C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands. Appl Soil Ecol 14:125–134

    Article  Google Scholar 

  • Cynthia M, Kallenbach, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun:1–10. https://doi.org/10.1038/ncomms13630

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in Response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In -situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger of free radical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017a) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9:1163. https://doi.org/10.3390/su9071163. 1–18

    Article  CAS  Google Scholar 

  • De Santis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383

    Article  CAS  Google Scholar 

  • DeAngelis KM, Ji PS, Firestone MK, Lindow SE (2005) Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Appl Environ Microbiol 71:8537–8547

    Article  CAS  Google Scholar 

  • DeForest JL, Smemo KA, Burke DJ, Elliott HL, Becker JC (2012) Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry 109:189–202

    Article  CAS  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    Article  CAS  Google Scholar 

  • Derry AM, Staddon WJ, Kevan PG, Trevors JT (1999) Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon source-utilization. Biodivers Conserv 8:205–221

    Article  Google Scholar 

  • Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Diaz-Torres ML, McNab R, Spratt DA, Villedieu A, Hunt N, Wilson M, Mullany P (2003) Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother 47:1430–1432

    Article  CAS  Google Scholar 

  • Dinel H, Monreal CM, Schnitzer M (1998) Extractable lipids and organic matter status in two soil catenas as influenced by tillage. Geoderma 86:279–293

    Article  CAS  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London, pp 332–333

    Book  Google Scholar 

  • Dokic L, Savic M, Narancic T, Vasiljevic B (2010) Metagenomic analysis of soil microbial communities. Arch Biol Sci 62:559–564

    Article  Google Scholar 

  • Drenovsky RE, Elliot GN, Graham KJ, Scow KM (2004) Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biol Biochem 36:1793–1800

    Article  CAS  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA, Kowalchuka GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942

    Article  CAS  Google Scholar 

  • Edney NA, Rizvi M (1996) Phytotoxicity of fatty acids present in dairy and hog manure. J Environ Sci Health Part B 31:269–281

    Article  Google Scholar 

  • Eiler H, Pernthaler J, Grockner FO, Amann R (2000) Culturability and in situ abundance of peragic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051

    Article  Google Scholar 

  • Eilers KG, Debenport S, Anderson S, Fierer N (2012) Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65. https://doi.org/10.1016/j.soilbio.2012.03.011

    Article  CAS  Google Scholar 

  • El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community- level physiological profiles. Appl Environ Microbiol 65:982–988

    Google Scholar 

  • Fakruddin MD, Mannan KSB (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci (Bio Sci) 42(1):19–13. https://doi.org/10.4038/cjsbs.v42i1.5896

    Article  Google Scholar 

  • Ferluga S, Venturi V (2009) OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonas oryzae pv. oryzae and rice. J Bacteriol 191:890–897

    Article  CAS  Google Scholar 

  • Ferrari BC, Oregaard G, Sorensen SJ (2004) Recovery of GFP-labeled bacteria for culturing and molecular analysis after cell sorting using a benchtop flow cytometer. Microb Ecol 48:239–245

    Article  CAS  Google Scholar 

  • Ferrari BC, Tujula N, Stoner K, Kjelleberg S (2006) Catalyzed reporter deposition-fluorescence in situ hybridization allows for enrichment-independent detection of microcolony-forming soil bacteria. Appl Environ Microbiol 72:918–922. https://doi.org/10.1128/AEM.72.1.918–922

    Article  CAS  Google Scholar 

  • Ferrari AE, Ravnskov S, Larsen J, Tonnersen T, Maronna RA, Wall LG (2015) Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from no-till agricultural soils. Soil Use Manag 31:165–175. https://doi.org/10.1111/sum.12165

    Article  Google Scholar 

  • Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM, Ward DM (1996) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62:1045–1050

    CAS  Google Scholar 

  • Filley TR, Boutton TW, Liao JD, Jastrow JD, Gamblin DE (2008) Chemical changes to non aggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna. J Geophys Res 113:G03009. https://doi.org/10.1029/2007JG000564

    Article  CAS  Google Scholar 

  • Findlay RH (2004) Determination of microbial community structure using phospholipid fatty acid profiles. In: Kowalchuk GA et al (eds) Molecular microbial ecology manual, 2nd edn. Kluwer, Dordrecht, pp 983–1004

    Google Scholar 

  • Frąc M, Oszust K, Lipiec J (2012) Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors (Basel) 12(3):3253–3268

    Article  Google Scholar 

  • Fredslund L, Ekelund F, Jacobsen CS, Johnsen K (2001) Development and application of a most-probable-number–PCR assay to quantify flagellate populations in soil samples. Appl Environ Microbiol 67:1613–1618

    Article  CAS  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  CAS  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16(9):827–834. https://doi.org/10.1094/MPMI.2003.16.9.827

    Article  CAS  Google Scholar 

  • Garland J (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential c source utilization. Soil Biol Biochem 28:213–221

    Article  CAS  Google Scholar 

  • Garland J (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300

    Article  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175

    Article  CAS  Google Scholar 

  • Ghazanfar S, Azim A, Ghazanfar MA, Anjum MI, Begum I (2010) Metagenomics and its application in soil microbial community studies: biotechnological prospects. J Anim Plant Sci 6:611–622

    Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79. https://doi.org/10.1007/s00792-004-0417-0

    Article  CAS  Google Scholar 

  • Gonzalez-Toril E, Gomez F, Rodriguez N, Fernandez D, Zuluaga J, Marin I, Amils R (2003) Geomicrobiology of the Tinto river, a model of interest for biohydrometallurgy. Hydrometallurgy 71:301–309

    Article  CAS  Google Scholar 

  • Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58–64

    CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Green D, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17:236–240

    Article  CAS  Google Scholar 

  • Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53:211–219

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153

    Article  CAS  Google Scholar 

  • Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    CAS  Google Scholar 

  • Haack SK, Garchow H, Klug MJ, Forney LJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61:1458–1468

    CAS  Google Scholar 

  • Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525

    Article  CAS  Google Scholar 

  • Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, Li SG, Zhang XB, Hu W, Wu ZH, Qin N, Li YZ (2013) Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 3:2101–2107

    Article  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    Article  CAS  Google Scholar 

  • Herron PM, Gage DJ, Cardon ZG (2010) Micro-scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant Cell Environ 33:199–210

    Article  CAS  Google Scholar 

  • Heyrman J, Mergaert J, Denys R, Swings J (1999) The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181:55–62

    Article  CAS  Google Scholar 

  • Hiltner L (1904) U ber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78. https://doi.org/10.1007/s12088-009-0021-1

    Article  CAS  Google Scholar 

  • Huang XY, Cui JW, Pu Y, Huang JH, Blyth AJ (2008) Identifying “free” and “bound” lipid fractions in stalagmite samples: an example from Heshang Cave, southern China. Appl Geochem 23:2589–2595

    Article  CAS  Google Scholar 

  • Huang X, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards. Int J Environ Res Public Health 15:574. https://doi.org/10.3390/ijerph15040574

    Article  CAS  Google Scholar 

  • Insam H, Amor K, Renner M, Crepaz C (1996) Changes in functional abilities of the microbial community during composting of manure. Microb Ecol 31:77–87

    Article  CAS  Google Scholar 

  • Iyer R, Iken B, Tamez T (2011) Isolation, Molecular and Biochemical Identification of Paraoxon Metabolizing Pseudomonas Species. J Bioremed Biodegrad 2:132. https://doi.org/10.4172/2155-6199.1000132

    Article  CAS  Google Scholar 

  • Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O (2017) Linking the below ground microbial composition, diversity and activity to soil borne disease suppression and growth promotion of tomato amended with biochar. Sci Rep 7:44382. https://doi.org/10.1038/srep44382

    Article  CAS  Google Scholar 

  • Jandl G, Leinweber P, Schulten HR, Eusterhues K (2004) The concentrations of fatty acids in organo-mineral particle-size fractions of a Chernozem. Eur J Soil Sci 55:459–469

    Article  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  Google Scholar 

  • Johnsen AR (2010) Introduction to microplate MPN-enumeration of hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 4160–4172

    Google Scholar 

  • Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689

    Article  CAS  Google Scholar 

  • Johnson KW, Carmichael MJ, McDonald W, Rose N, Pitchford J, Windelspecht M, Karatan E, Brauer SL (2012) Increased abundance of Gallionella spp., Leptothrix spp. and total bacteria in response to enhanced Mn and Fe concentrations in a disturbed Southern Appalachian high elevation wetland. Geomicrobiology 29(2):124–138

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    Article  CAS  Google Scholar 

  • Kamer M, Baath E (1998) Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol Ecol 27:9–20

    Article  Google Scholar 

  • Kathiravan V, Krishnani KK (2014) Pseudomonas aeruginosa and Achromobacter sp.: Nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. World J Microbiol Biotechnol 30(4):1187–1198

    Article  CAS  Google Scholar 

  • Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2(2):141–150

    Article  CAS  Google Scholar 

  • Khatoon H, Solanki P, Narayan M, Tewari L, Rai JPN (2017) Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. Int J Chem Stud 5(6):1648–1656

    CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58(2):169–188

    Article  CAS  Google Scholar 

  • Knietsch A, Bowien S, Whited G, Gottschalk G, Daniel R (2003) Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol 69:3048–3060

    Article  CAS  Google Scholar 

  • Konopka A, Oliver JL, Turco RF (1998) The use of carbon source utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115

    Article  CAS  Google Scholar 

  • Koops HP, Pommerening-Rose A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37(1):1–9

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Current Microb Appl Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017a) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9

    Article  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Laguerre G, Bardin M, Amarger N (1993) Isolation from soil of symbiotic and non-symbiotic Rhizobium leguminosarum by DNA hybridization. Can J Microbiol 39(12):1142–1149. https://doi.org/10.1139/m93-172

    Article  CAS  Google Scholar 

  • Land M, Hauser L, Jun S-R et al (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161

    Article  CAS  Google Scholar 

  • Lasker BA (2002) Evaluation of performance of four genotypic methods for studying the genetic epidemiology of Aspergillus fumigatus isolates. J Clin Microbiol 40:2886–2892

    Article  CAS  Google Scholar 

  • Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281

    Article  CAS  Google Scholar 

  • Lechevalier MP (1989) Lipids in bacterial taxonomy. In: O’Leary WM (ed) Practical handbook of microbiology. CRC Press, Boca Raton, pp 57–67

    Google Scholar 

  • Li XQ, Du D (2014) Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla. PLoS One 9(2):e88339. https://doi.org/10.1371/journal.pone.0088339

    Article  CAS  Google Scholar 

  • Li HB, Singh RK, Singh P, Song QQ, Xing YX, Yang LT, Li YR (2017) Genetic diversity of nitrogen-fixing and plant growth promoting pseudomonas species isolated from sugarcane rhizosphere. Front Microbiol 8:1268. https://doi.org/10.3389/fmicb.2017.01268

    Article  Google Scholar 

  • Liebeke M, Brözel VS, Hecker M, Lalk M (2009) Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Appl Microbiol Biotechnol 83:161–173. https://doi.org/10.1007/s00253-009-1965-0

    Article  CAS  Google Scholar 

  • Lima-Perim JE et al (2016) Linking the composition of bacterial and archaeal communities to characteristics of soil and flora composition in the Atlantic Rainforest. PLoS One 11(1):e0146566

    Article  CAS  Google Scholar 

  • Lochhead AG, Chase FE (1943) Qualitative studies of soil micro-organisms: Nutritional requirements of the predominant bacterial flora. Soil Sci 55:185

    Article  Google Scholar 

  • Lorenz P, Schleper C (2002) Metagenome—a challenging source of enzyme discovery. J Mol Catal B Enzym 19:13–19

    Article  Google Scholar 

  • Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68(10):5064–5081. https://doi.org/10.1128/AEM.68.10.5064–5081.2002

    Article  CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, New York

    Google Scholar 

  • Madsen EL (2005) Identifying microorganisms responsible for ecologically significant biogeo-chemical processes. Nat Rev Microbiol 3:439–446

    Article  CAS  Google Scholar 

  • Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233

    Article  Google Scholar 

  • Martín M, Gibello A, Lobo C, Nande M, Garbi C, Fajardo C, Barra-Caracciolo A, Grenni P, Martínez-Iñigo MJ (2008) Application of fluorescence in situ hybridization technique to detect simazine-degrading bacteria in soil samples. Chemosphere 71(4):703–710

    Article  CAS  Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6(2):344–348

    Article  CAS  Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797

    Google Scholar 

  • Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western Dry Zone of India. Bangladesh J Bot 43(2):169–173

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of mungbean. Am J Exp Agric 8(3):159–166

    CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015e) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western Dry Zone of India. Am J Exp Agric 7(3):170–177

    CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017b) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017c) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018a) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Legum Res 41(4):563–571

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, p 37. https://doi.org/10.1007/978-81-322-2068-82

    Chapter  Google Scholar 

  • Morgan JAW, Whipps JM (2001) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, Inc., New York, pp 373–409

    Google Scholar 

  • Morgan JA, Winstanley E (1997) Microbial biomarkers. In: VanElsas JD, Trevors JT, Wellington EM (eds) Modern soil microbiology. Marcel Dekker, Inc., New York, pp 331–352

    Google Scholar 

  • Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    Article  CAS  Google Scholar 

  • Muller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. In: Bonini NM (ed) Annual review of genetics, vol 50. Annual Reviews, Palo Alto, pp 211–234

    Google Scholar 

  • Naafs DFW, van Bergen PF, Boogert SJ, de Leeuw JW (2004) Solvent extractable lipids in an acid andic forest soil: variations with depth and season. Soil Biol Biochem 36:297–308

    Article  CAS  Google Scholar 

  • Nercessian O, Prokofeva M, Lebedinski A, Haridon LS, Cary C, Prieur D, Jeanthon C (2004) Design of 16S rRNA-targeted oligonucleotide probes for detecting cultured and uncultured archaeal lineages in high-temperature environments. Environ Microbiol 6:170–182

    Article  CAS  Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. NERI Technical Report No. 388. National Environmental Research Institute, Ministry of the Environment, Denmark. http://www.dmu.dk

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc 15:327–337

    Google Scholar 

  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D, Dutilh BE (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrid. PLoS One 9(3):e90841. https://doi.org/10.1371/journal.pone.0090841

    Article  CAS  Google Scholar 

  • Novello G, GamaleroE BE, Boatti L, Mignone F, MassaN CP, Lingua G, Berta G (2017) The rhizosphere bacterial microbiota of Vitis vinifera cv. pinot noir in an integrated pest management vineyard. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01528

  • Nusslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65:3622–3626

    CAS  Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbrad lD, DeLong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Article  CAS  Google Scholar 

  • Overmann J, Gemerden HV (2000) Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24:591–599

    Article  CAS  Google Scholar 

  • Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315

    Article  CAS  Google Scholar 

  • Ovreas L, Daae FL, Heldal M, Torsvik V, Rodriguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301

    Article  CAS  Google Scholar 

  • Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. 3 Biotech 2(2):127–134. https://doi.org/10.1007/s13205-011-0033-5

    Article  Google Scholar 

  • Pearce DA, van der Gast CJ, Lawley B, Ellis-Evans JC (2003) Bacterioplankton community diversity in a maritime Antarctic lake, determined by culture-dependent and culture-independent techniques. FEMS Microbiol Ecol 45:59–70

    Article  CAS  Google Scholar 

  • Perez-Trallero E, Montes M, Orden B, Tamayo E, Garcia-Arenzana JM, Marimon JM (2007) Phenotypic and genotypic characterization of Streptococcus pyogenes isolates displaying the MLSB phenotype of macrolide resistance in Spain, 1999 to 2005. Antimicrob Agents Chemother 51:1228–1233

    Article  CAS  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  Google Scholar 

  • Pernthaler J, Pernthaler A, Amann R (2003) Automated enumeration of groups of marine picoplankton after fluorescence in situ hybridization. Appl Environ Microbiol 69:2631–2637

    Article  CAS  Google Scholar 

  • Pham VHT, Kim J (2016) Improvement for isolation of soil bacteria by using common culture media. J Pure Appl Microbiol 10(1):49–59

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (eds) (2001) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York

    Google Scholar 

  • Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16:291–303

    Article  CAS  Google Scholar 

  • Poulsen LK, Ballard G, Stahl DA (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol 59:1354–1360

    CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson P (2002) Analysis of microbial community functional diversity using sole-carbon-source utilization profiles – a critique. FEMS Microbiol Ecol 42:1–14

    CAS  Google Scholar 

  • Prosser JI (2002) Molecular and functional diversity in soil microorganisms. Plant Soil 244:9–17

    Article  CAS  Google Scholar 

  • Rajan A, Aruna N, Kaur S (2011) Comparative study of FAME and sequence analysis for identification of Bacteria. Biotechnol Bioinf Bioeng 1(3):319–323

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rashida MI, Mujawar LH, Shahzade T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  Google Scholar 

  • Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9:e87217

    Article  CAS  Google Scholar 

  • Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279(11):2022–2035. https://doi.org/10.1111/j.1742-4658.2012.08588.x. PMID:22458847

    Article  CAS  Google Scholar 

  • Reichardt WT (1978) Einfuhrung in die Methoden der Gewassermikrobiologie. Gustav-Fischer Verlag, Stuttgart

    Google Scholar 

  • Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70(7):4303–4317. https://doi.org/10.1128/AEM.70.7.4303–4317.2004

    Article  CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  Google Scholar 

  • Rochat L, Pechy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol Pseudomonad on cereals with flow cytometry. Mol Plant-Microbe Interact 23:949–961

    Article  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    Article  CAS  Google Scholar 

  • Röling WFM, van Breukelen BM, Braster M, Goeltom MT, Groen J, van Verseveld HW (2000) Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb Ecol 40:177–188

    Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  Google Scholar 

  • Ros M, Goberna M, Pascual JA, Klammer S, Insam H (2008) 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Methods 72:221–226

    Article  CAS  Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379

    CAS  Google Scholar 

  • Rudolph C, Wanner G, Huber R (2001) Natural communities of novel Archaea and Bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67:2336–2344

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruit’s beneficial soil bacteria. Plant Physiol 148(3):1547–1556. https://doi.org/10.1104/pp.108.127613

    Article  CAS  Google Scholar 

  • Rusch A, Amend JP (2004) Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper) thermophilic archaea and bacteria. Extremophiles 8:357–366

    Article  CAS  Google Scholar 

  • Sandaa RA, Torsvik V, Enger Ò, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  CAS  Google Scholar 

  • Schleifer K (2004) Microbial diversity: facts, problems and prospects. Syst Appl Microbiol 27:3–9

    Article  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Bioechnol 14:303–310

    Article  CAS  Google Scholar 

  • Schmidt H, Eickhorst T (2014) Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence in- situ hybridization. FEMS Microbiol Ecol 87:390–402

    Article  CAS  Google Scholar 

  • Schönhuber W, Fuchs B, Juretschko S, Amann R (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63:3268–3273

    Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  CAS  Google Scholar 

  • Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using Two-color fluorescent probe hybridization. Genome Res 6:639–645. https://doi.org/10.1101/gr.6.7.639

    Article  CAS  Google Scholar 

  • Sharma PD (2005) Terrestrial environments. In: Environmental microbiology. Alpha Science International, Harrow, pp 27–51

    Google Scholar 

  • Shridhar B (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52

    Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav, Yadav RS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1-2):517–519

    Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  Google Scholar 

  • Skyring GW, Quadling C (1970) Soil bacteria: a principal component analysis and guanine–cytosine contents of some Arthrobacter–coryneform soil isolates and of some named cultures. Can J Microbiol 16(2):95–106. https://doi.org/10.1139/m70-017

    Article  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240. https://doi.org/10.1080/10408410490468786

    Article  CAS  Google Scholar 

  • Soni R, Kumar A, Kanwar SS, Pabbi S (2017) Efficacy of liquid formulation of versatile rhizobacteria isolated from soils of Northern Western Himalayas on Solanum lycopersicum. IJTK 16(4):660–668

    Google Scholar 

  • Stainer A, Levi-Minzi R, Riffaldi R (1998) Maturity evaluation of organic wastes. Biocycle 29:54–56

    Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of non-photosynthetic organisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2006) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506

    Article  Google Scholar 

  • Stefani FOP, Bell TH, Marchand C, de la Providencia IE, El Yassimi A, St-Arnaud M, Hijri M (2015) Culture-dependent and -independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS One 10(6):e0128272. https://doi.org/10.1371/journal.pone.0128272

    Article  CAS  Google Scholar 

  • Stein JL, Marsh TL, Wu KY, Shizuya H, De Long EF (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment front a planktonic marine archaeon. J Bacteriol 178:591–599

    Article  CAS  Google Scholar 

  • Stender H, Lund K, Petersen KH, Rasmussen OF, Hongmanee P, Miorner H, Godtfredsen SE (1999) Fluorescence in situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J Clin Microbiol 37:2760–2765

    CAS  Google Scholar 

  • Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 6(4):347–363

    Article  CAS  Google Scholar 

  • Sugiyama A, Shitan N, Yazaki K (2008) Signaling from soybean roots to Rhizobium: an ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal Behav 3(1):38–40. https://doi.org/10.4161/psb.3.1.4819. PMID:19704765

    Article  Google Scholar 

  • Surve VV, Patil MU, Dharmadhikari SM (2012) FAME and 16srDNA sequence analysis of halophilic bacteria from solar salterns of Goa: a comparative study. Int J Sci Res Publ 2(8):1–8

    Google Scholar 

  • Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol 40:169–176

    CAS  Google Scholar 

  • Taylor CB (1951) Nature of the factor in soil-extract responsible for bacterial growth-stimulation. Nature 168:115–116

    Article  CAS  Google Scholar 

  • Teotia P, Kumar M, Prasad R, Kumar V, Tuteja N, Varma A (2017) Mobilization of micronutrients by mycorrhizal fungi. In: Varma A et al (eds) Mycorrhiza – function, diversity, state of the art. https://doi.org/10.1007/978-3-319-53064-2_2

    Chapter  Google Scholar 

  • Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26:37–57

    Article  CAS  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nusslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122. https://doi.org/10.1016/S0929-1393(99)00026-8

    Article  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  Google Scholar 

  • Torsvik V, Salte K, Soerheim R, Goksoeyr J (1990a) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol 56:776–781

    CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990b) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17:170–178

    CAS  Google Scholar 

  • Torsvik V, Daae FL, Sandaa R, Ovreas L (1998) Review article: novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  CAS  Google Scholar 

  • Trevors JT (1998) Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water Air Soil Pollut 101:45–67

    Article  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JS (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  Google Scholar 

  • Vahjen W, Munch JC, Tebbe CC (1995) Carbon source utilization of soil extracted microorganisms supplemented with genetically engineered and non-engineered Corynebacterium glutamicum and a recombinant peptide at the community level. FEMS Microbiol Ecol 18:317–328

    Article  CAS  Google Scholar 

  • Van Nguyen T, Pawlowski K (2017) Frankia and actinorhizal plants: symbiotic nitrogen fixation. In: Mehnaz S (ed) Rhizotrophs: plant growth promotion to bioremediation, Microorganisms for sustainability, vol 2. Springer, Singapore

    Google Scholar 

  • Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stu 5(2):384–389

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017a) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545

    Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons J, Tillson HB, Pfannkoch C, Rogers YH, Smith OH (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  Google Scholar 

  • Vera-Gargallo B, Navarro-Sampedro L, Carballo M, Ventosa A (2018) Metagenome Sequencing of Prokaryotic Microbiota from Two Hypersaline Soils of the Odiel Salt Marshes in Huelva, Southwestern Spain. Genome Announc 6(9):e00140–e00118. https://doi.org/10.1128/genomeA.00140-18

    Article  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015a) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015b) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Vester F, Ingvorsen K (1998) Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl Environ Microbiol 64(5):1700–1707

    CAS  Google Scholar 

  • Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterization of prokaryotes. Curr Opin Microbiol 6:302–309

    Article  CAS  Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S ribosomal RNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65

    Article  CAS  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454. https://doi.org/10.1093/jxb/ers054

    Article  CAS  Google Scholar 

  • Wintzingerode FV, Göbel-Ulf B, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229. https://doi.org/10.1111/j.1574-6976.1997.tb00351.x

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  Google Scholar 

  • Worner U, Zimmermann-Timm H (2000) Beggiatoa leptomitiformis – a filamentous sulfur-oxidizing bacterium colonizing laboratory-made aggregates. Limnol Ecol Manag Inland Waters 30(2):215–221

    Article  Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017a) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in North Eastern Region of India. Ecol Indic. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das A, Layek J, Saha P (2017b) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018a) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018b) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1423555

    Article  Google Scholar 

  • Yang Y, Wang N, Guo X, Zhang Y, Ye B (2017) Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One 12(5):e0178425. https://doi.org/10.1371/journal.pone.0178425

    Article  CAS  Google Scholar 

  • Yao H, He Z, Wilson MJ, Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40:223–237

    CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307. https://doi.org/10.1016/j.pbi.2005.03.011. PMID:15860427

    Article  CAS  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108

    Article  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol Fertil Soils 29:111–129

    Article  CAS  Google Scholar 

  • Zeyaullah M, Kamli MR, Islam B, Atif M, Benkhayal FA, Nehal M, Rizvi MA, Ali A (2009) Metagenomics- an advanced approach for noncultivable micro-organisms. Biotechnol Mol Biol Rev 4:49–54

    CAS  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Benjamin P, Bowen, Firestone MK, Northen TR, Brodie EL (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480. https://doi.org/10.1038/s41564-018-0129-3

    Article  CAS  Google Scholar 

  • Zhang L, Xu Z (2008) Assessing bacterial diversity in soil. J Soils Sediments 8:379–388. https://doi.org/10.1007/s11368-008-0043-z

    Article  CAS  Google Scholar 

  • Zimmermann J, Ludwig W, Schleifer KH (2001) DNA polynucleotide probes generated from representatives of the genus Acinetobacter and their application in fluorescence in situ hybridization of environmental samples. Syst Appl Microbiol 24:238–244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchi Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devi, S., Soni, R. (2020). Relevance of Microbial Diversity in Implicating Soil Restoration and Health Management. In: Meena, R. (eds) Soil Health Restoration and Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-8570-4_5

Download citation

Publish with us

Policies and ethics