Advertisement

Relevance of Microbial Diversity in Implicating Soil Restoration and Health Management

  • Sunita Devi
  • Ruchi SoniEmail author
Chapter
  • 368 Downloads

Abstract

Soil comprises three interconnected factors responsible for its fertility including physical, chemical, and biological. The soil fertility depends upon the diversity of living microorganisms in the soil and their interaction with other physicochemical components, which accounts for their higher complexity and dynamic behavior. It has been documented as the well-understood component for soil fertility. Along with maintaining the soil fertility, soil microorganisms also impart essential roles in the nutrient biogeochemical cycles that are the fundamentals of life on the earth. A small amount of soil exhibits a great deal of microbial diversity, which includes bacteria, actinomycetes, fungi, algae, and protozoa. Bacteria comprise dominating population in the soil followed by actinomycetes, fungi, algae, and protozoa. It has been reported that one gram of soil may contain 109–1010 prokaryotes including bacteria-archaea and actinomycetes, 104–107 protists, ∼100 m of fungal hyphae, and 108–109 viruses. The rhizosphere, a narrow zone influenced by plant roots, provides an active habitat for abundant microbes and is considered as one of the most complex ecosystems on the earth. To improve soil health and plant growth performance, it is important to know about the occurrence of diverse microbes and their behavior and role in the rhizosphere microbiome. Moreover, the ability of root exudates for mediating plant–microbe and plant–microbiome interactions could maintain agricultural practices sustainable. This chapter explores the utility and functioning of soil microbial diversity in terms of its agricultural relevance and subsequent increased crop production so that the growing world population scenario could conquer. The microbial population has not been promoted effectively in agricultural practices till date because several beneficial soil microbes are still not explored. So, the chapter insights the various modern molecular tools that will provide an opportunity to discover new species currently unknown to science.

Keywords

Microbial diversity Metagenome Plant growth Plant nutrition Soil health management 

Abbreviations

SOM

Soil organic matter

DOM

Dissolved organic matter

C

Carbon

CLPP

Community level physiological profile

SCSU

Sole-carbon-source utilization

CSUP

Carbon substrate utilization profiles

TTC

Triphenyl tetrazolium chloride

DGGE

Denaturing gradient gel electrophoresis

MPN

Most probable number

FAME

Fatty acid methyl ester

PLFA

Phospholipid fatty acid

DNA

Deoxyribonucleic acid

ARDRA

Amplified ribosomal DNA restriction analysis

Co

DNA concentration

t

Incubation time

MATE

Multidrug and toxic compound extrusion

PGPR

Plant-growth-promoting rhizobacteria

QS

Quorum sensing

IVET

In vivo expression technology

AMF

Arbuscular mycorrhizal fungi

References

  1. Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641.  https://doi.org/10.4161/psb.20039 CrossRefGoogle Scholar
  2. Agrawal PK, Agrawal S, Shrivastava R (2015) Modern molecular approaches for analyzing microbial diversity from mushroom compost ecosystem. 3 Biotech 5:853–866.  https://doi.org/10.1007/s13205-015-0289-2 CrossRefGoogle Scholar
  3. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant Sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827.  https://doi.org/10.1038/nature03608 CrossRefGoogle Scholar
  4. Akkermans ADL, van Elsas JD, de Bruijn FJ (1995) Molecular microbial ecology manual. Kluwer, DordrechtCrossRefGoogle Scholar
  5. Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971.  https://doi.org/10.3389/fmicb.2017.00971 CrossRefGoogle Scholar
  6. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  7. Arias ME, González-Pérez JA, González-Vila FJ, Ball AS (2005) Soil health: a new challenge for microbiologists and chemists. Int Microbiol 8:13–21Google Scholar
  8. Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441CrossRefGoogle Scholar
  9. Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Cummings Publishing Company, Benjamin, pp 281–324Google Scholar
  10. Azcarate-Peril MA, Tallon R, Klaenhammer TR (2009) Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J Dairy Sci 92:870–886CrossRefGoogle Scholar
  11. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681.  https://doi.org/10.1111/j.1365-3040.2009.01926.x. PMID: 19143988CrossRefGoogle Scholar
  12. Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273.  https://doi.org/10.1111/nph.12124. PMID: 23347044CrossRefGoogle Scholar
  13. Baldock J (2007) Composition and cycling of organic carbon in soil. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, pp 1–36Google Scholar
  14. Banowetz GM, Whittaker GW, Dierksen KP, Azevedo MD, Kennedy AC, Griffith SM, Steiner JJ (2006) Fatty acid methyl ester analysis to identify sources of soil in surface water. J Environ Qual 3:133–140CrossRefGoogle Scholar
  15. Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743CrossRefGoogle Scholar
  16. Bej AK, Perlin M, Atlas RM (1991) Effect of introducing genetically engineered microorganisms on soil microbial diversity. FEMS Microbiol Ecol 86:169–175CrossRefGoogle Scholar
  17. Bertaux J, Gloger U, Schmid M, Hartmann A, Scheu S (2007) Routine fluorescence in situ hybridization in soil. J Microbiol Methods 69:451–460CrossRefGoogle Scholar
  18. Bertilsson S, Cavanaugh CM, Polz MF (2002) Sequencing-independent method to generate oligonucleotide probes targeting a variable region in bacterial 16S rRNA by PCR with detachable primers. Appl Environ Microbiol 68:6077–6086CrossRefGoogle Scholar
  19. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66.  https://doi.org/10.1186/1475-2859-13-66 CrossRefGoogle Scholar
  20. Bhat AK (2013) Preserving Microbial diversity of Soil ecosystem: a key to sustainable productivity. Int J Curr Microbiol Appl Sci 2:85–101Google Scholar
  21. Bhatia U, Robison K, Gilbert W (1997) Dealing with database explosion: a cautionary note. Science 276:1724–1725CrossRefGoogle Scholar
  22. Bligh EG, Dyer WJ (1959) A lipid method of total lipid extraction and purification. Can J Biochem 37:911–917Google Scholar
  23. Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5(7):566–582CrossRefGoogle Scholar
  24. Bossio DA, Scow KM (1995) Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Appl Environ Microbiol 61:4043–4050Google Scholar
  25. Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278CrossRefGoogle Scholar
  26. Boughner L, Singh P (2016) Microbial ecology: where are we now? Postdoc J 4(11):3–17.  https://doi.org/10.14304/surya.jpr.v4n11.2 CrossRefGoogle Scholar
  27. Brady NC, Weil RR (2014) The nature and properties of soils. Pearson Education Limited, HarlowGoogle Scholar
  28. Braga RM, Dourado MN, Araujo WL (2016) Microbial interactions: ecology in a molecular perspective. BJM 47:86–98Google Scholar
  29. Brodie EL, De Santis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72(9):6288–6298.  https://doi.org/10.1128/AEM.00246-06 CrossRefGoogle Scholar
  30. Brodie EL, De Santis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci 104(1):299–304.  https://doi.org/10.1073/pnas.0608255104 CrossRefGoogle Scholar
  31. Broughton LC, Gross K (2000) Patterns of diversity in plant soil microbial communities along a productivity gradient in a michigan old-field. Oecologia 125:420–427CrossRefGoogle Scholar
  32. Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987CrossRefGoogle Scholar
  33. Brussard L, de Ruiter PC, Brown GC (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244CrossRefGoogle Scholar
  34. Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, SchulzeLefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838.  https://doi.org/10.1146/annurev-arplant-050312-120106 CrossRefGoogle Scholar
  35. Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res.  https://doi.org/10.1071/SR17001 CrossRefGoogle Scholar
  36. Buyer JS, Sasser M (2012) High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol 61:127–130CrossRefGoogle Scholar
  37. Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J Microbiol Methods 30:33–41CrossRefGoogle Scholar
  38. Cassidy MB, Leung KT, Lee H, Trevors JT (2000) A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. J Microbiol Methods 40:135–145CrossRefGoogle Scholar
  39. Castan˜eda LE, Barbosa O (2017) Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5:e3098.  https://doi.org/10.7717/peerj.3098 CrossRefGoogle Scholar
  40. Centifanto YM, Silaver WS (1964) Leaf-nodule symbiosis endophyte of Psychotria bacteriophila. J Bacteriol 88(3):776–781Google Scholar
  41. Chandler DP, Brockman FJ, Fredrickson JK (1997a) A Use of 16S rDNA clone libraries to study changes in a microbial community resulting from ex-situ perturbation of a subsurface sediment. FEMS Microbiol Rev 20:217–230CrossRefGoogle Scholar
  42. Chandler DP, Li SM, Spadoni CM, Drake GR, Balkwill DL, Fredrickson JK, Brockman FJ (1997b) A molecular comparison of culturable aerobic heterotrophic bacteria and 16S rDNA clones derived from a deep subsurface sediment. FEMS Microbiol Ecol 23:131–144CrossRefGoogle Scholar
  43. Chandna P, Nain L, Singh S, Kuhad RC (2013) Assessment of bacterial diversity during composting of agricultural byproducts. BMC Microbiol 13:99–113.  https://doi.org/10.1186/1471-2180-13-99 CrossRefGoogle Scholar
  44. Chaparro JM, Badri DV, Vivanco JM (2013) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803.  https://doi.org/10.1038/ismej.2013.196 CrossRefGoogle Scholar
  45. Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 1:24.  https://doi.org/10.1371/journal.pcbi.0010024 CrossRefGoogle Scholar
  46. Cho JC, Tiedje JM (2001) Bacterial species determination from DNA–DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 67:3677–3682CrossRefGoogle Scholar
  47. Choudhary DK, Agarwal PK, Johri BN (2009) Evaluation of in situ functional activity of casing soils during growth cycle of mushroom (Agaricus bisporus (Lange) Imbach) employing community level physiological profiles (CLPPs). Indian J Microbiol 50(1):19–26CrossRefGoogle Scholar
  48. Clegg CD, Ritz K, Griffiths BS (2000) %G+C profiling and cross hybridisation of microbial DNA reveals great variation in below-ground community structure in UK upland grasslands. Appl Soil Ecol 14:125–134CrossRefGoogle Scholar
  49. Cynthia M, Kallenbach, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun:1–10.  https://doi.org/10.1038/ncomms13630
  50. Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in Response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378Google Scholar
  51. Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57CrossRefGoogle Scholar
  52. Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M (2001) In -situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284CrossRefGoogle Scholar
  53. Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger of free radical in soil. Sustain MDPI 9:402.  https://doi.org/10.3390/su9081402 CrossRefGoogle Scholar
  54. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017a) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9:1163.  https://doi.org/10.3390/su9071163. 1–18CrossRefGoogle Scholar
  55. De Santis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383CrossRefGoogle Scholar
  56. DeAngelis KM, Ji PS, Firestone MK, Lindow SE (2005) Two novel bacterial biosensors for detection of nitrate availability in the rhizosphere. Appl Environ Microbiol 71:8537–8547CrossRefGoogle Scholar
  57. DeForest JL, Smemo KA, Burke DJ, Elliott HL, Becker JC (2012) Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry 109:189–202CrossRefGoogle Scholar
  58. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433CrossRefGoogle Scholar
  59. Derry AM, Staddon WJ, Kevan PG, Trevors JT (1999) Functional diversity and community structure of micro-organisms in three arctic soils as determined by sole-carbon source-utilization. Biodivers Conserv 8:205–221CrossRefGoogle Scholar
  60. Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482CrossRefGoogle Scholar
  61. Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594Google Scholar
  62. Diaz-Torres ML, McNab R, Spratt DA, Villedieu A, Hunt N, Wilson M, Mullany P (2003) Novel tetracycline resistance determinant from the oral metagenome. Antimicrob Agents Chemother 47:1430–1432CrossRefGoogle Scholar
  63. Dinel H, Monreal CM, Schnitzer M (1998) Extractable lipids and organic matter status in two soil catenas as influenced by tillage. Geoderma 86:279–293CrossRefGoogle Scholar
  64. Dix NJ, Webster J (1995) Fungal ecology. Chapman & Hall, London, pp 332–333CrossRefGoogle Scholar
  65. Dokic L, Savic M, Narancic T, Vasiljevic B (2010) Metagenomic analysis of soil microbial communities. Arch Biol Sci 62:559–564CrossRefGoogle Scholar
  66. Drenovsky RE, Elliot GN, Graham KJ, Scow KM (2004) Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biol Biochem 36:1793–1800CrossRefGoogle Scholar
  67. Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, van Veen JA, Kowalchuka GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci U S A 107:10938–10942CrossRefGoogle Scholar
  68. Edney NA, Rizvi M (1996) Phytotoxicity of fatty acids present in dairy and hog manure. J Environ Sci Health Part B 31:269–281CrossRefGoogle Scholar
  69. Eiler H, Pernthaler J, Grockner FO, Amann R (2000) Culturability and in situ abundance of peragic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051CrossRefGoogle Scholar
  70. Eilers KG, Debenport S, Anderson S, Fierer N (2012) Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem 50:58–65.  https://doi.org/10.1016/j.soilbio.2012.03.011 CrossRefGoogle Scholar
  71. El Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community- level physiological profiles. Appl Environ Microbiol 65:982–988Google Scholar
  72. Fakruddin MD, Mannan KSB (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci (Bio Sci) 42(1):19–13.  https://doi.org/10.4038/cjsbs.v42i1.5896 CrossRefGoogle Scholar
  73. Ferluga S, Venturi V (2009) OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonas oryzae pv. oryzae and rice. J Bacteriol 191:890–897CrossRefGoogle Scholar
  74. Ferrari BC, Oregaard G, Sorensen SJ (2004) Recovery of GFP-labeled bacteria for culturing and molecular analysis after cell sorting using a benchtop flow cytometer. Microb Ecol 48:239–245CrossRefGoogle Scholar
  75. Ferrari BC, Tujula N, Stoner K, Kjelleberg S (2006) Catalyzed reporter deposition-fluorescence in situ hybridization allows for enrichment-independent detection of microcolony-forming soil bacteria. Appl Environ Microbiol 72:918–922.  https://doi.org/10.1128/AEM.72.1.918–922 CrossRefGoogle Scholar
  76. Ferrari AE, Ravnskov S, Larsen J, Tonnersen T, Maronna RA, Wall LG (2015) Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from no-till agricultural soils. Soil Use Manag 31:165–175.  https://doi.org/10.1111/sum.12165 CrossRefGoogle Scholar
  77. Ferris MJ, Ruff-Roberts AL, Kopczynski ED, Bateson MM, Ward DM (1996) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. Appl Environ Microbiol 62:1045–1050Google Scholar
  78. Filley TR, Boutton TW, Liao JD, Jastrow JD, Gamblin DE (2008) Chemical changes to non aggregated particulate soil organic matter following grassland-to-woodland transition in a subtropical savanna. J Geophys Res 113:G03009.  https://doi.org/10.1029/2007JG000564 CrossRefGoogle Scholar
  79. Findlay RH (2004) Determination of microbial community structure using phospholipid fatty acid profiles. In: Kowalchuk GA et al (eds) Molecular microbial ecology manual, 2nd edn. Kluwer, Dordrecht, pp 983–1004Google Scholar
  80. Frąc M, Oszust K, Lipiec J (2012) Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors (Basel) 12(3):3253–3268CrossRefGoogle Scholar
  81. Fredslund L, Ekelund F, Jacobsen CS, Johnsen K (2001) Development and application of a most-probable-number–PCR assay to quantify flagellate populations in soil samples. Appl Environ Microbiol 67:1613–1618CrossRefGoogle Scholar
  82. Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65CrossRefGoogle Scholar
  83. Frostegard A, Tunlid A, Baath E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625CrossRefGoogle Scholar
  84. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390CrossRefGoogle Scholar
  85. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16(9):827–834.  https://doi.org/10.1094/MPMI.2003.16.9.827 CrossRefGoogle Scholar
  86. Garland J (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential c source utilization. Soil Biol Biochem 28:213–221CrossRefGoogle Scholar
  87. Garland J (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300CrossRefGoogle Scholar
  88. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359Google Scholar
  89. Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microb Ecol 52:159–175CrossRefGoogle Scholar
  90. Ghazanfar S, Azim A, Ghazanfar MA, Anjum MI, Begum I (2010) Metagenomics and its application in soil microbial community studies: biotechnological prospects. J Anim Plant Sci 6:611–622Google Scholar
  91. Gonzalez JM, Saiz-Jimenez C (2005) A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9:75–79.  https://doi.org/10.1007/s00792-004-0417-0 CrossRefGoogle Scholar
  92. Gonzalez-Toril E, Gomez F, Rodriguez N, Fernandez D, Zuluaga J, Marin I, Amils R (2003) Geomicrobiology of the Tinto river, a model of interest for biohydrometallurgy. Hydrometallurgy 71:301–309CrossRefGoogle Scholar
  93. Graham JH, Hodge NC, Morton JB (1995) Fatty acid methyl ester profiles for characterization of Glomalean fungi and their endomycorrhizae. Appl Environ Microbiol 61:58–64Google Scholar
  94. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378CrossRefGoogle Scholar
  95. Green D, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17:236–240CrossRefGoogle Scholar
  96. Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53:211–219CrossRefGoogle Scholar
  97. Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153CrossRefGoogle Scholar
  98. Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969Google Scholar
  99. Haack SK, Garchow H, Klug MJ, Forney LJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61:1458–1468Google Scholar
  100. Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525CrossRefGoogle Scholar
  101. Han K, Li ZF, Peng R, Zhu LP, Zhou T, Wang LG, Li SG, Zhang XB, Hu W, Wu ZH, Qin N, Li YZ (2013) Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 3:2101–2107CrossRefGoogle Scholar
  102. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685CrossRefGoogle Scholar
  103. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257CrossRefGoogle Scholar
  104. Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21CrossRefGoogle Scholar
  105. Herron PM, Gage DJ, Cardon ZG (2010) Micro-scale water potential gradients visualized in soil around plant root tips using microbiosensors. Plant Cell Environ 33:199–210CrossRefGoogle Scholar
  106. Heyrman J, Mergaert J, Denys R, Swings J (1999) The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181:55–62CrossRefGoogle Scholar
  107. Hiltner L (1904) U ber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78.  https://doi.org/10.1007/s12088-009-0021-1 CrossRefGoogle Scholar
  108. Huang XY, Cui JW, Pu Y, Huang JH, Blyth AJ (2008) Identifying “free” and “bound” lipid fractions in stalagmite samples: an example from Heshang Cave, southern China. Appl Geochem 23:2589–2595CrossRefGoogle Scholar
  109. Huang X, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275CrossRefGoogle Scholar
  110. Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards. Int J Environ Res Public Health 15:574.  https://doi.org/10.3390/ijerph15040574 CrossRefGoogle Scholar
  111. Insam H, Amor K, Renner M, Crepaz C (1996) Changes in functional abilities of the microbial community during composting of manure. Microb Ecol 31:77–87CrossRefGoogle Scholar
  112. Iyer R, Iken B, Tamez T (2011) Isolation, Molecular and Biochemical Identification of Paraoxon Metabolizing Pseudomonas Species. J Bioremed Biodegrad 2:132.  https://doi.org/10.4172/2155-6199.1000132 CrossRefGoogle Scholar
  113. Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O (2017) Linking the below ground microbial composition, diversity and activity to soil borne disease suppression and growth promotion of tomato amended with biochar. Sci Rep 7:44382.  https://doi.org/10.1038/srep44382 CrossRefGoogle Scholar
  114. Jandl G, Leinweber P, Schulten HR, Eusterhues K (2004) The concentrations of fatty acids in organo-mineral particle-size fractions of a Chernozem. Eur J Soil Sci 55:459–469CrossRefGoogle Scholar
  115. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728CrossRefGoogle Scholar
  116. Johnsen AR (2010) Introduction to microplate MPN-enumeration of hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 4160–4172Google Scholar
  117. Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689CrossRefGoogle Scholar
  118. Johnson KW, Carmichael MJ, McDonald W, Rose N, Pitchford J, Windelspecht M, Karatan E, Brauer SL (2012) Increased abundance of Gallionella spp., Leptothrix spp. and total bacteria in response to enhanced Mn and Fe concentrations in a disturbed Southern Appalachian high elevation wetland. Geomicrobiology 29(2):124–138CrossRefGoogle Scholar
  119. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics dissolved organic matter in soils: a review. Soil Sci 165(4):277–304CrossRefGoogle Scholar
  120. Kamer M, Baath E (1998) Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol Ecol 27:9–20CrossRefGoogle Scholar
  121. Kathiravan V, Krishnani KK (2014) Pseudomonas aeruginosa and Achromobacter sp.: Nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. World J Microbiol Biotechnol 30(4):1187–1198CrossRefGoogle Scholar
  122. Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Microbiol 2(2):141–150CrossRefGoogle Scholar
  123. Khatoon H, Solanki P, Narayan M, Tewari L, Rai JPN (2017) Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. Int J Chem Stud 5(6):1648–1656Google Scholar
  124. Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58(2):169–188CrossRefGoogle Scholar
  125. Knietsch A, Bowien S, Whited G, Gottschalk G, Daniel R (2003) Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol 69:3048–3060CrossRefGoogle Scholar
  126. Konopka A, Oliver JL, Turco RF (1998) The use of carbon source utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115CrossRefGoogle Scholar
  127. Koops HP, Pommerening-Rose A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37(1):1–9CrossRefGoogle Scholar
  128. Kumar S, Meena RS, Pandey A, Seema (2017) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Current Microb Appl Sci 6(3):2566–2573CrossRefGoogle Scholar
  129. Kumar S, Meena RS, Yadav GS, Pandey A (2017a) Response of sesame (Sesamum indicum L.) to sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9CrossRefGoogle Scholar
  130. Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76Google Scholar
  131. Laguerre G, Bardin M, Amarger N (1993) Isolation from soil of symbiotic and non-symbiotic Rhizobium leguminosarum by DNA hybridization. Can J Microbiol 39(12):1142–1149.  https://doi.org/10.1139/m93-172 CrossRefGoogle Scholar
  132. Land M, Hauser L, Jun S-R et al (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161CrossRefGoogle Scholar
  133. Lasker BA (2002) Evaluation of performance of four genotypic methods for studying the genetic epidemiology of Aspergillus fumigatus isolates. J Clin Microbiol 40:2886–2892CrossRefGoogle Scholar
  134. Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281CrossRefGoogle Scholar
  135. Lechevalier MP (1989) Lipids in bacterial taxonomy. In: O’Leary WM (ed) Practical handbook of microbiology. CRC Press, Boca Raton, pp 57–67Google Scholar
  136. Li XQ, Du D (2014) Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla. PLoS One 9(2):e88339.  https://doi.org/10.1371/journal.pone.0088339 CrossRefGoogle Scholar
  137. Li HB, Singh RK, Singh P, Song QQ, Xing YX, Yang LT, Li YR (2017) Genetic diversity of nitrogen-fixing and plant growth promoting pseudomonas species isolated from sugarcane rhizosphere. Front Microbiol 8:1268.  https://doi.org/10.3389/fmicb.2017.01268 CrossRefGoogle Scholar
  138. Liebeke M, Brözel VS, Hecker M, Lalk M (2009) Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria. Appl Microbiol Biotechnol 83:161–173.  https://doi.org/10.1007/s00253-009-1965-0 CrossRefGoogle Scholar
  139. Lima-Perim JE et al (2016) Linking the composition of bacterial and archaeal communities to characteristics of soil and flora composition in the Atlantic Rainforest. PLoS One 11(1):e0146566CrossRefGoogle Scholar
  140. Lochhead AG, Chase FE (1943) Qualitative studies of soil micro-organisms: Nutritional requirements of the predominant bacterial flora. Soil Sci 55:185CrossRefGoogle Scholar
  141. Lorenz P, Schleper C (2002) Metagenome—a challenging source of enzyme discovery. J Mol Catal B Enzym 19:13–19CrossRefGoogle Scholar
  142. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68(10):5064–5081.  https://doi.org/10.1128/AEM.68.10.5064–5081.2002 CrossRefGoogle Scholar
  143. Lynch JM (1990) The rhizosphere. Wiley, New YorkGoogle Scholar
  144. Madsen EL (2005) Identifying microorganisms responsible for ecologically significant biogeo-chemical processes. Nat Rev Microbiol 3:439–446CrossRefGoogle Scholar
  145. Manlay RJ, Feller C, Swift MJ (2007) Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric Ecosyst Environ 119:217–233CrossRefGoogle Scholar
  146. Martín M, Gibello A, Lobo C, Nande M, Garbi C, Fajardo C, Barra-Caracciolo A, Grenni P, Martínez-Iñigo MJ (2008) Application of fluorescence in situ hybridization technique to detect simazine-degrading bacteria in soil samples. Chemosphere 71(4):703–710CrossRefGoogle Scholar
  147. Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244Google Scholar
  148. Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6(2):344–348CrossRefGoogle Scholar
  149. Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797Google Scholar
  150. Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western Dry Zone of India. Bangladesh J Bot 43(2):169–173CrossRefGoogle Scholar
  151. Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of mungbean. Am J Exp Agric 8(3):159–166Google Scholar
  152. Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  153. Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  154. Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515CrossRefGoogle Scholar
  155. Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015e) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western Dry Zone of India. Am J Exp Agric 7(3):170–177Google Scholar
  156. Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Nat Sci 8(2):715–718CrossRefGoogle Scholar
  157. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260CrossRefGoogle Scholar
  158. Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359CrossRefGoogle Scholar
  159. Meena RS, Kumar S, Pandey A (2017b) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227Google Scholar
  160. Meena RS, Meena PD, Yadav GS, Yadav SS (2017c) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158CrossRefGoogle Scholar
  161. Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018a) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Legum Res 41(4):563–571Google Scholar
  162. Meena RS, Kumar V, Yadav GS, Mitran T (2018b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223CrossRefGoogle Scholar
  163. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefGoogle Scholar
  164. Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, p 37.  https://doi.org/10.1007/978-81-322-2068-82 CrossRefGoogle Scholar
  165. Morgan JAW, Whipps JM (2001) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, Inc., New York, pp 373–409Google Scholar
  166. Morgan JA, Winstanley E (1997) Microbial biomarkers. In: VanElsas JD, Trevors JT, Wellington EM (eds) Modern soil microbiology. Marcel Dekker, Inc., New York, pp 331–352Google Scholar
  167. Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112CrossRefGoogle Scholar
  168. Muller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. In: Bonini NM (ed) Annual review of genetics, vol 50. Annual Reviews, Palo Alto, pp 211–234Google Scholar
  169. Naafs DFW, van Bergen PF, Boogert SJ, de Leeuw JW (2004) Solvent extractable lipids in an acid andic forest soil: variations with depth and season. Soil Biol Biochem 36:297–308CrossRefGoogle Scholar
  170. Nercessian O, Prokofeva M, Lebedinski A, Haridon LS, Cary C, Prieur D, Jeanthon C (2004) Design of 16S rRNA-targeted oligonucleotide probes for detecting cultured and uncultured archaeal lineages in high-temperature environments. Environ Microbiol 6:170–182CrossRefGoogle Scholar
  171. Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. NERI Technical Report No. 388. National Environmental Research Institute, Ministry of the Environment, Denmark. http://www.dmu.dk
  172. Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc 15:327–337Google Scholar
  173. Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D, Dutilh BE (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrid. PLoS One 9(3):e90841.  https://doi.org/10.1371/journal.pone.0090841 CrossRefGoogle Scholar
  174. Novello G, GamaleroE BE, Boatti L, Mignone F, MassaN CP, Lingua G, Berta G (2017) The rhizosphere bacterial microbiota of Vitis vinifera cv. pinot noir in an integrated pest management vineyard. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.01528
  175. Nusslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65:3622–3626Google Scholar
  176. Orphan VJ, Taylor LT, Hafenbrad lD, DeLong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711CrossRefGoogle Scholar
  177. Overmann J, Gemerden HV (2000) Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24:591–599CrossRefGoogle Scholar
  178. Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315CrossRefGoogle Scholar
  179. Ovreas L, Daae FL, Heldal M, Torsvik V, Rodriguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301CrossRefGoogle Scholar
  180. Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. 3 Biotech 2(2):127–134.  https://doi.org/10.1007/s13205-011-0033-5 CrossRefGoogle Scholar
  181. Pearce DA, van der Gast CJ, Lawley B, Ellis-Evans JC (2003) Bacterioplankton community diversity in a maritime Antarctic lake, determined by culture-dependent and culture-independent techniques. FEMS Microbiol Ecol 45:59–70CrossRefGoogle Scholar
  182. Perez-Trallero E, Montes M, Orden B, Tamayo E, Garcia-Arenzana JM, Marimon JM (2007) Phenotypic and genotypic characterization of Streptococcus pyogenes isolates displaying the MLSB phenotype of macrolide resistance in Spain, 1999 to 2005. Antimicrob Agents Chemother 51:1228–1233CrossRefGoogle Scholar
  183. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101CrossRefGoogle Scholar
  184. Pernthaler J, Pernthaler A, Amann R (2003) Automated enumeration of groups of marine picoplankton after fluorescence in situ hybridization. Appl Environ Microbiol 69:2631–2637CrossRefGoogle Scholar
  185. Pham VHT, Kim J (2016) Improvement for isolation of soil bacteria by using common culture media. J Pure Appl Microbiol 10(1):49–59Google Scholar
  186. Pinton R, Varanini Z, Nannipieri P (eds) (2001) The rhizosphere: biochemistry and organic substances at the soil–plant interface. Marcel Dekker, New YorkGoogle Scholar
  187. Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16:291–303CrossRefGoogle Scholar
  188. Poulsen LK, Ballard G, Stahl DA (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol 59:1354–1360Google Scholar
  189. Preston-Mafham J, Boddy L, Randerson P (2002) Analysis of microbial community functional diversity using sole-carbon-source utilization profiles – a critique. FEMS Microbiol Ecol 42:1–14Google Scholar
  190. Prosser JI (2002) Molecular and functional diversity in soil microorganisms. Plant Soil 244:9–17CrossRefGoogle Scholar
  191. Rajan A, Aruna N, Kaur S (2011) Comparative study of FAME and sequence analysis for identification of Bacteria. Biotechnol Bioinf Bioeng 1(3):319–323Google Scholar
  192. Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in Arid Region of Rajasthan (India). Bangladesh J Bot 43(3):367–370CrossRefGoogle Scholar
  193. Rashida MI, Mujawar LH, Shahzade T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41CrossRefGoogle Scholar
  194. Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9:e87217CrossRefGoogle Scholar
  195. Reddy VS, Shlykov MA, Castillo R, Sun EI, Saier MH (2012) The major facilitator superfamily (MFS) revisited. FEBS J 279(11):2022–2035.  https://doi.org/10.1111/j.1742-4658.2012.08588.x. PMID:22458847CrossRefGoogle Scholar
  196. Reichardt WT (1978) Einfuhrung in die Methoden der Gewassermikrobiologie. Gustav-Fischer Verlag, StuttgartGoogle Scholar
  197. Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70(7):4303–4317.  https://doi.org/10.1128/AEM.70.7.4303–4317.2004 CrossRefGoogle Scholar
  198. Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552CrossRefGoogle Scholar
  199. Rochat L, Pechy-Tarr M, Baehler E, Maurhofer M, Keel C (2010) Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol Pseudomonad on cereals with flow cytometry. Mol Plant-Microbe Interact 23:949–961CrossRefGoogle Scholar
  200. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290CrossRefGoogle Scholar
  201. Röling WFM, van Breukelen BM, Braster M, Goeltom MT, Groen J, van Verseveld HW (2000) Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb Ecol 40:177–188Google Scholar
  202. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547CrossRefGoogle Scholar
  203. Ros M, Goberna M, Pascual JA, Klammer S, Insam H (2008) 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Methods 72:221–226CrossRefGoogle Scholar
  204. Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379Google Scholar
  205. Rudolph C, Wanner G, Huber R (2001) Natural communities of novel Archaea and Bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67:2336–2344CrossRefGoogle Scholar
  206. Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruit’s beneficial soil bacteria. Plant Physiol 148(3):1547–1556.  https://doi.org/10.1104/pp.108.127613 CrossRefGoogle Scholar
  207. Rusch A, Amend JP (2004) Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper) thermophilic archaea and bacteria. Extremophiles 8:357–366CrossRefGoogle Scholar
  208. Sandaa RA, Torsvik V, Enger Ò, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251CrossRefGoogle Scholar
  209. Schleifer K (2004) Microbial diversity: facts, problems and prospects. Syst Appl Microbiol 27:3–9CrossRefGoogle Scholar
  210. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Bioechnol 14:303–310CrossRefGoogle Scholar
  211. Schmidt H, Eickhorst T (2014) Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence in- situ hybridization. FEMS Microbiol Ecol 87:390–402CrossRefGoogle Scholar
  212. Schönhuber W, Fuchs B, Juretschko S, Amann R (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63:3268–3273Google Scholar
  213. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286CrossRefGoogle Scholar
  214. Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using Two-color fluorescent probe hybridization. Genome Res 6:639–645.  https://doi.org/10.1101/gr.6.7.639 CrossRefGoogle Scholar
  215. Sharma PD (2005) Terrestrial environments. In: Environmental microbiology. Alpha Science International, Harrow, pp 27–51Google Scholar
  216. Shridhar B (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52Google Scholar
  217. Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav, Yadav RS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1-2):517–519Google Scholar
  218. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161CrossRefGoogle Scholar
  219. Skyring GW, Quadling C (1970) Soil bacteria: a principal component analysis and guanine–cytosine contents of some Arthrobacter–coryneform soil isolates and of some named cultures. Can J Microbiol 16(2):95–106.  https://doi.org/10.1139/m70-017 CrossRefGoogle Scholar
  220. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240.  https://doi.org/10.1080/10408410490468786 CrossRefGoogle Scholar
  221. Soni R, Kumar A, Kanwar SS, Pabbi S (2017) Efficacy of liquid formulation of versatile rhizobacteria isolated from soils of Northern Western Himalayas on Solanum lycopersicum. IJTK 16(4):660–668Google Scholar
  222. Stainer A, Levi-Minzi R, Riffaldi R (1998) Maturity evaluation of organic wastes. Biocycle 29:54–56Google Scholar
  223. Staley JT, Konopka A (1985) Measurement of in situ activities of non-photosynthetic organisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346CrossRefGoogle Scholar
  224. Steenhoudt O, Vanderleyden J (2006) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506CrossRefGoogle Scholar
  225. Stefani FOP, Bell TH, Marchand C, de la Providencia IE, El Yassimi A, St-Arnaud M, Hijri M (2015) Culture-dependent and -independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS One 10(6):e0128272.  https://doi.org/10.1371/journal.pone.0128272 CrossRefGoogle Scholar
  226. Stein JL, Marsh TL, Wu KY, Shizuya H, De Long EF (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment front a planktonic marine archaeon. J Bacteriol 178:591–599CrossRefGoogle Scholar
  227. Stender H, Lund K, Petersen KH, Rasmussen OF, Hongmanee P, Miorner H, Godtfredsen SE (1999) Fluorescence in situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J Clin Microbiol 37:2760–2765Google Scholar
  228. Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 6(4):347–363CrossRefGoogle Scholar
  229. Sugiyama A, Shitan N, Yazaki K (2008) Signaling from soybean roots to Rhizobium: an ATP-binding cassette-type transporter mediates genistein secretion. Plant Signal Behav 3(1):38–40.  https://doi.org/10.4161/psb.3.1.4819. PMID:19704765CrossRefGoogle Scholar
  230. Surve VV, Patil MU, Dharmadhikari SM (2012) FAME and 16srDNA sequence analysis of halophilic bacteria from solar salterns of Goa: a comparative study. Int J Sci Res Publ 2(8):1–8Google Scholar
  231. Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microb Ecol 40:169–176Google Scholar
  232. Taylor CB (1951) Nature of the factor in soil-extract responsible for bacterial growth-stimulation. Nature 168:115–116CrossRefGoogle Scholar
  233. Teotia P, Kumar M, Prasad R, Kumar V, Tuteja N, Varma A (2017) Mobilization of micronutrients by mycorrhizal fungi. In: Varma A et al (eds) Mycorrhiza – function, diversity, state of the art.  https://doi.org/10.1007/978-3-319-53064-2_2 CrossRefGoogle Scholar
  234. Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26:37–57CrossRefGoogle Scholar
  235. Tiedje JM, Asuming-Brempong S, Nusslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122.  https://doi.org/10.1016/S0929-1393(99)00026-8 CrossRefGoogle Scholar
  236. Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245CrossRefGoogle Scholar
  237. Torsvik V, Salte K, Soerheim R, Goksoeyr J (1990a) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol 56:776–781Google Scholar
  238. Torsvik V, Goksoyr J, Daae FL (1990b) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787Google Scholar
  239. Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17:170–178Google Scholar
  240. Torsvik V, Daae FL, Sandaa R, Ovreas L (1998) Review article: novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62CrossRefGoogle Scholar
  241. Trevors JT (1998) Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils. Water Air Soil Pollut 101:45–67CrossRefGoogle Scholar
  242. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JS (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43CrossRefGoogle Scholar
  243. Vahjen W, Munch JC, Tebbe CC (1995) Carbon source utilization of soil extracted microorganisms supplemented with genetically engineered and non-engineered Corynebacterium glutamicum and a recombinant peptide at the community level. FEMS Microbiol Ecol 18:317–328CrossRefGoogle Scholar
  244. Van Nguyen T, Pawlowski K (2017) Frankia and actinorhizal plants: symbiotic nitrogen fixation. In: Mehnaz S (ed) Rhizotrophs: plant growth promotion to bioremediation, Microorganisms for sustainability, vol 2. Springer, SingaporeGoogle Scholar
  245. Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stu 5(2):384–389Google Scholar
  246. Varma D, Meena RS, Kumar S, Kumar E (2017a) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545Google Scholar
  247. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons J, Tillson HB, Pfannkoch C, Rogers YH, Smith OH (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74CrossRefGoogle Scholar
  248. Vera-Gargallo B, Navarro-Sampedro L, Carballo M, Ventosa A (2018) Metagenome Sequencing of Prokaryotic Microbiota from Two Hypersaline Soils of the Odiel Salt Marshes in Huelva, Southwestern Spain. Genome Announc 6(9):e00140–e00118.  https://doi.org/10.1128/genomeA.00140-18 CrossRefGoogle Scholar
  249. Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  250. Verma JP, Meena VS, Kumar A, Meena RS (2015a) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794CrossRefGoogle Scholar
  251. Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015b) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442CrossRefGoogle Scholar
  252. Vester F, Ingvorsen K (1998) Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl Environ Microbiol 64(5):1700–1707Google Scholar
  253. Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterization of prokaryotes. Curr Opin Microbiol 6:302–309CrossRefGoogle Scholar
  254. Ward DM, Weller R, Bateson MM (1990) 16S ribosomal RNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65CrossRefGoogle Scholar
  255. Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454.  https://doi.org/10.1093/jxb/ers054 CrossRefGoogle Scholar
  256. Wintzingerode FV, Göbel-Ulf B, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229.  https://doi.org/10.1111/j.1574-6976.1997.tb00351.x CrossRefGoogle Scholar
  257. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271Google Scholar
  258. Worner U, Zimmermann-Timm H (2000) Beggiatoa leptomitiformis – a filamentous sulfur-oxidizing bacterium colonizing laboratory-made aggregates. Limnol Ecol Manag Inland Waters 30(2):215–221CrossRefGoogle Scholar
  259. Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169Google Scholar
  260. Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017a) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in North Eastern Region of India. Ecol Indic. http://www.sciencedirect.com/science/article/pii/S1470160X17305617
  261. Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das A, Layek J, Saha P (2017b) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37CrossRefGoogle Scholar
  262. Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018a) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157CrossRefGoogle Scholar
  263. Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018b) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. Arch Agron Soil Sci.  https://doi.org/10.1080/03650340.2018.1423555 CrossRefGoogle Scholar
  264. Yang Y, Wang N, Guo X, Zhang Y, Ye B (2017) Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One 12(5):e0178425.  https://doi.org/10.1371/journal.pone.0178425 CrossRefGoogle Scholar
  265. Yao H, He Z, Wilson MJ, Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40:223–237Google Scholar
  266. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307.  https://doi.org/10.1016/j.pbi.2005.03.011. PMID:15860427CrossRefGoogle Scholar
  267. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108CrossRefGoogle Scholar
  268. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol Fertil Soils 29:111–129CrossRefGoogle Scholar
  269. Zeyaullah M, Kamli MR, Islam B, Atif M, Benkhayal FA, Nehal M, Rizvi MA, Ali A (2009) Metagenomics- an advanced approach for noncultivable micro-organisms. Biotechnol Mol Biol Rev 4:49–54Google Scholar
  270. Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Benjamin P, Bowen, Firestone MK, Northen TR, Brodie EL (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480.  https://doi.org/10.1038/s41564-018-0129-3 CrossRefGoogle Scholar
  271. Zhang L, Xu Z (2008) Assessing bacterial diversity in soil. J Soils Sediments 8:379–388.  https://doi.org/10.1007/s11368-008-0043-z CrossRefGoogle Scholar
  272. Zimmermann J, Ludwig W, Schleifer KH (2001) DNA polynucleotide probes generated from representatives of the genus Acinetobacter and their application in fluorescence in situ hybridization of environmental samples. Syst Appl Microbiol 24:238–244CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Basic Science, College of ForestryDr. YSP University of Horticulture & Forestry NauniSolanIndia
  2. 2.Regional Centre of Organic FarmingNagpurIndia

Personalised recommendations