Advertisement

Retained Intraocular Foreign Body

  • Pedro Felipe Mylla Boso
  • Luis Felipe da Silva Alves Carneiro
Chapter
  • 193 Downloads
Part of the Retina Atlas book series (RA)

Abstract

Ocular trauma is an important cause of preventable visual impairment worldwide. An estimated 2.4 million cases occur every year in the USA, with serious vision-threatening injuries ranging from 20,000 to 68,000 of these. Most cases presented in a study by the National Eye Trauma System Registry were seen in young male patients and happened in a home or workplace setting (Parver et al. 1993); therefore, the economic and social burden of this topic cannot be overstated. According to the Birmingham Eye Trauma Terminology (BETT) system, intraocular foreign bodies (IOFBs) or retained foreign objects are a subset of penetrating injuries, when there is an entrance wound without an exit wound (Kuhn et al. 2004). They account for 14–43% of open-globe injuries (OGIs) (Patel et al. 2012; Zhang et al. 2011; Shock and Adams 1985) and pose challenging surgical cases in which the goal is to remove the foreign body (FB) while attempting to preserve vision and restore ocular architecture (Greven et al. 2000). The most common site of entry is the cornea (65%), followed by the sclera (25%) and the limbus (10%) (Rathod and Mieler 2011). Most IOFBs are seen in the posterior segment (Katz and Moisseiev 2009; Zhang et al. 2011) but can also be found in the anterior chamber or even in the lens (Fig. 9.1). The composition of IOFBs differ, ranging from organic material such as wood and insect parts to inert substances like plastic and glass, but most of them are metallic in nature (Greven et al. 2000; Woodcock et al. 2006).

References

  1. Bhagat N, Nagori S, Zarbin M. Post-traumatic infectious endophthalmitis. Surv Ophthalmol. 2011;56(3):214–51.PubMedCrossRefGoogle Scholar
  2. Bray LC, Griffiths PG. The value of plain radiography in suspected intraocular foreign body. Eye. 1991;5:751–4.PubMedCrossRefGoogle Scholar
  3. Bryden FM, Pyott AA, Bailey M, et al. Real time ultrasound in the assessment of intra-ocular foreign bodies. Eye. 1990;4:727–31.PubMedCrossRefGoogle Scholar
  4. Cardillo J, Stout J, LaBree L, et al. Posttraumatic proliferative vitreoretinopathy. The epidemiologic profile, onset, risk factors, and visual outcome. Ophthalmology. 1997;104:1166–73.PubMedCrossRefGoogle Scholar
  5. Cazabon S, Dabbs TR. Intralenticular metallic foreign body. J Cataract Refract Surg. 2002;28:2233–4.PubMedCrossRefGoogle Scholar
  6. Chacko JG, Figueroa RE, Johnsons MH, et al. Detection and localization of steel intraocular foreign bodies using computed tomography. Ophthalmology. 1997;104(2):319–23.PubMedCrossRefGoogle Scholar
  7. Coleman DJ, Lucas BC, Rondeau MJ, et al. Management of intraocular foreign bodies. Ophthalmology. 1987;94(12):1647–53.PubMedCrossRefGoogle Scholar
  8. Colyer MH, Weber ED, Weichel ED. Delayed intraocular foreign body removal without endophthalmitis during operations Iraqi freedom and enduring freedom. Ophthalmology. 2007;114:1439–47.PubMedCrossRefGoogle Scholar
  9. Dannenberg AL, Parver LM, Fowler CJ. Penetrating eye injuries related to assault. The National Eye Trauma System Registry. Arch Ophthalmol. 1992;110(6):849–52.PubMedCrossRefGoogle Scholar
  10. Deramo VA, Shsh GK, Baumal CR, et al. The role of ultrasound biomicroscopy in ocular trauma. Trans Am Ophthalmol Soc. 1998;96:355–65.PubMedPubMedCentralGoogle Scholar
  11. Dowlut MS, Curragh DS, Napier M, et al. The varied presentations of siderosis from retained intraocular foreign body. Clin Exp Optom. 2019;102(1):86–8.PubMedCrossRefGoogle Scholar
  12. Ehlers JP, Kunimoto DY, Ittoop S, et al. Metallic intraocular foreign bodies: characteristics, interventions, and prognostic factors for visual outcome and globe survival. Am J Ophthalmol. 2008;146(3):427–33.PubMedCrossRefGoogle Scholar
  13. Essex RW, Yi Q, Charles PGP, et al. Post-traumatic endophthalmitis. Ophthalmology. 2004;111(11):2015–22.PubMedCrossRefGoogle Scholar
  14. Greven CM, Engelbrecht NE, Slusher MM, et al. Intraocular foreign bodies: management, prognostic factors, and visual outcomes. Ophthalmology. 2000;107(3):608–12.PubMedCrossRefGoogle Scholar
  15. Güler M, Yilmaz T, Yigit M, et al. A case of a retained intralenticular foreign body for two years. Clin Ophthalmol. 2010;7(4):955–7.CrossRefGoogle Scholar
  16. Jonas JB, Budde WM. Early versus late removal of retained intraocular foreign bodies. Retina. 1999;19(3):193–7.PubMedCrossRefGoogle Scholar
  17. Katz G, Moisseiev J. Posterior segment intraocular foreign bodies: an update on management. Retin Physician. 2009;6(3):32–4.Google Scholar
  18. Knave B. Electroretinography in eyes with retained intraocular metallic foreign bodies: a clinical study. Acta Ophthalmol. 1969;S100:1–63.Google Scholar
  19. Kuhn F, Pieramici DJ. Intraocular foreign bodies. In: Kuhn F, Pieramici DJ, editors. Ocular trauma: principles and practice. New York: Thieme; 2002. p. 235–63.Google Scholar
  20. Kuhn F, Maisiak R, Mann L, et al. The ocular trauma score (OTS). Ophthalmol Clin N Am. 2002;15(2):163–5.CrossRefGoogle Scholar
  21. Kuhn F, Morris R, Witherspoon CD, et al. The Birmingham Eye Trauma Terminology System (BETT). J Fr Ophthalmol. 2004;27(2):206–10.CrossRefGoogle Scholar
  22. Lawrence DA, Lipman AT, Gupta SK, et al. Undetected intraocular metallic foreign body causing hyphema in a patient undergoing MRI: a rare occurrence demonstrating the limitations of pre-MRI safety screening. Magn Reson Imaging. 2015;33(3):358–61.PubMedCrossRefGoogle Scholar
  23. Lieb DF, Scott IU, Flynn HW, et al. Open globe injuries with positive intraocular cultures: factors influencing final visual acuity outcomes. Ophthalmology. 2003;110(8):1560–6.PubMedCrossRefGoogle Scholar
  24. Lit ES, Young LH. Anterior and posterior segment intraocular foreign bodies. Int Ophthalmol Clin. 2002;42:107–20.PubMedCrossRefGoogle Scholar
  25. Loporchio D, Mukkamala L, Gorukanti K, et al. Intraocular foreign bodies: a review. Surv Ophthalmol. 2016;61:582–96.PubMedCrossRefGoogle Scholar
  26. McGahan M, Bito L, Myers B. The pathophysiology of the ocular microenvironment. II. Copper-induced ocular inflammation and hypotony. Exp Eye Res. 1986;42:595–605.PubMedCrossRefGoogle Scholar
  27. McNicholas MM, Brophy DP, Power WJ, et al. Ocular trauma: evaluation with us. Radiology. 1995;195(2):423–7.PubMedCrossRefGoogle Scholar
  28. Medina FM, Pierre Filho PTP, Lupinacci APC, et al. Intralenticular metal foreign body: case report. Arq Bras Oftalmol. 2006;69(5):749–51.PubMedCrossRefGoogle Scholar
  29. Moisseiev E, Last D, Goez D, et al. Magnetic resonance imaging and computed tomography for the detection and characterization of nonmetallic intraocular foreign bodies. Retina. 2015;35(1):82–94.PubMedCrossRefGoogle Scholar
  30. Parke DW 3rd, Flynn HW Jr, Fisher YL. Management of intraocular foreign bodies: a clinical flight plan. Can J Ophthalmol. 2013;48(1):8–12.PubMedCrossRefGoogle Scholar
  31. Parver LM, Dannenberg AL, Blacklow B, et al. Characteristics and causes of penetrating eye injuries reported to the National Eye Trauma System Registry, 1985-91. Public Health Rep. 1993;108:625–30.PubMedPubMedCentralGoogle Scholar
  32. Patel SN, Langer PD, Zarbin MA, et al. Diagnostic value of clinical examination and radiographic imaging in identification of intraocular foreign bodies in open globe injury. Eur J Ophthalmol. 2012;22(2):259–68.PubMedCrossRefGoogle Scholar
  33. Potts AM, Distler JA. Shape factor in the penetration of intraocular foreign bodies. Am J Ophthalmol. 1985;100(1):183–7.PubMedCrossRefGoogle Scholar
  34. Rathod R, Mieler WF. An update on the management of intraocular foreign bodies. Retin Physician. 2011;8(3):52–5.Google Scholar
  35. Saeed A, Cassidy L, Malone DE, et al. Plain X-ray and computed tomography of the orbit in cases and suspected cases of intraocular foreign body. Eye. 2008;22(11):1373–7.PubMedCrossRefGoogle Scholar
  36. Shock JP, Adams D. Long-term visual acuity results after penetrating and perforating ocular injuries. Am J Ophthalmol. 1985;100:714–8.PubMedCrossRefGoogle Scholar
  37. Sneed SR, Weingeist TA. Management of siderosis bulbi due to a retained iron-containing intraocular foreign body. Ophthalmology. 1990;97(3):375–9.PubMedCrossRefGoogle Scholar
  38. Szijarto Z, Gaal V, Kovacs B. Prognosis of penetrating eye injuries with posterior segment intraocular foreign body. Graefes Arch Clin Exp Ophthalmol. 2008;246:161–5.PubMedCrossRefGoogle Scholar
  39. Ta CN, Bowman RW. Hyphema caused by a metallic intraocular foreign body during magnetic resonance imaging. Am J Ophthalmol. 2000;129(4):533–4.PubMedCrossRefGoogle Scholar
  40. Thompson JT, Parver LM, Enger CL, et al. Infectious endophthalmitis after penetrating injuries with retained intraocular foreign bodies. Ophthalmology. 1993;100(10):1468–74.PubMedCrossRefGoogle Scholar
  41. Wani VB, Al-Ajmi M, Thalib L, et al. Vitrectomy for posterior segment intraocular foreign bodies: visual results and prognostic factors. Retina. 2003;23(5):654–60.PubMedCrossRefGoogle Scholar
  42. Wickham L, Xing W, Bunce C, et al. Outcomes of surgery for posterior segment intraocular foreign bodies – a retrospective review of 17 years of clinical experience. Graefes Arch Clin Exp Ophthalmol. 2006;244(12):1620–6.PubMedCrossRefGoogle Scholar
  43. Williams DF, Mieler WF, Abrams GW, et al. Results and prognostic factors in penetrating ocular injuries with retained intraocular foreign bodies. Ophthalmology. 1988;95(7):911–6.PubMedCrossRefGoogle Scholar
  44. Woodcock MG, Scott RA, Huntbach J, et al. Mass and shape as factors in intraocular foreign body injuries. Ophthalmology. 2006;113(12):2262–9.PubMedCrossRefGoogle Scholar
  45. Yeh S, Colyer MH, Weichel ED. Current trends in the management of intraocular foreign bodies. Curr Opin Ophthalmol. 2008;19:225–33.PubMedCrossRefGoogle Scholar
  46. Zhang Y, Cheng J, Bai J, et al. Tiny ferromagnetic intraocular foreign bodies detected by magnetic resonance imaging: a report of two cases. J Magn Reson Imaging. 2009;29(3):704–7.PubMedCrossRefGoogle Scholar
  47. Zhang Y, Zhang M, Jiang C, et al. Intraocular foreign bodies in China: clinical characteristics, prognostic factors, and visual outcomes in 1,421 eyes. Am J Ophthalmol. 2011;152(1):66–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Pedro Felipe Mylla Boso
    • 1
  • Luis Felipe da Silva Alves Carneiro
    • 2
  1. 1.Instituto de Olhos de FlorianópolisFlorianópolisBrazil
  2. 2.Department of OphthalmologySanta Casa de Belo HorizonteBelo HorizonteBrazil

Personalised recommendations