Skip to main content

An Overview of Atmospheric Reactive Nitrogen in China from a Global Perspective

  • Chapter
  • First Online:
Atmospheric Reactive Nitrogen in China

Abstract

Atmospheric reactive nitrogen (N), as an important component of global N cycle, has been significantly altered by anthropogenic emissions and consequently induced worldwide impacts on air pollution and ecosystem services. Due to rapid agricultural, industrial, and urban development, China has been experiencing a rapid increase in reactive N emissions and deposition since the late 1970s. Based on a literature review, this book summarizes recent research on (1) atmospheric reactive N as a global environmental issue (Chap. 1), (2) the emission, deposition, and budget of atmospheric reactive N (Chaps. 2, 3, 4 and 5), (3) the contribution of reactive N to air pollution (e.g., haze, surface O3, and acid deposition) (Chaps. 6, 7 and 8), (4) the impacts of N deposition on sensitive ecosystems (e.g., forests, grasslands, deserts, and lakes) (Chaps. 9, 10, 11 and 12), and (5) the regulatory strategies for mitigation of atmospheric reactive N pollution from agricultural and nonagricultural sectors in China (Chaps. 13 and 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, McDowell W, Nadelhoffer K et al (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience 48:921–934

    Article  Google Scholar 

  • Abrol YP, Adhya TK, Aneja VP et al (eds) (2017) The Indian nitrogen assessment: sources of reactive nitrogen, environmental and climate effects, management options, and policies. Elsevier B.V, Amsterdam

    Google Scholar 

  • Bai YF, Wu JG, Clark C et al (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  Google Scholar 

  • Bowman WD, Cleveland CC, Halada Ĺ et al (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770

    Article  CAS  Google Scholar 

  • Crutzen PJ (1988) Tropospheric ozone: an overview. In: Tropospheric ozone. Springer, Dordrecht, pp 3–32

    Chapter  Google Scholar 

  • De Vries W, Solberg S, Dobbertin M et al (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manag 258:1814–1823

    Article  Google Scholar 

  • De Vries W, Du E, Butterbach-Bahl K (2014) Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr Opin Environ Sust 9-10:90–104

    Article  Google Scholar 

  • Dentener F, Drevet J, Lamarque JF et al (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycles 20:GB4003

    Article  Google Scholar 

  • Doering O, Galloway JN, Theis TL et al (2011) Reactive nitrogen in the United States: an analysis of inputs, flows, consequences, and management options. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Du E (2016) Rise and fall of nitrogen deposition in the United States. PNAS 113:E3594–E3595

    Article  CAS  Google Scholar 

  • Du E, De Vries W (2018) Nitrogen-induced new net primary production and carbon sequestration in global forests. Environ Pollut 242:1476–1487

    Article  CAS  Google Scholar 

  • Du E, Zhou Z, Li P et al (2013) NEECF: a project of nutrient enrichment experiments in China’s forests. J Plant Ecol 6:428–435

    Article  Google Scholar 

  • Du E, de Vries W, Liu X et al (2015) Spatial boundary of urban ‘acid islands’ in China. Sci Rep 5:12625

    Article  CAS  Google Scholar 

  • Du E, de Vries W, Han WX et al (2016) Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmos Chem Phys 16:8571–8579

    Article  CAS  Google Scholar 

  • Du E, Dong D, Zeng X et al (2017) Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. Sci Total Environ 605:764–769

    Article  Google Scholar 

  • Duce RA, LaRoche J, Altieri K et al (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–897

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  Google Scholar 

  • Fowler D, Coyle M, Skiba U et al (2013) The global nitrogen cycle in the twenty-first century. Phil Trans R Soc B 368:20130164

    Article  Google Scholar 

  • Galloway JN (2001) Acidification of the world: natural and anthropogenic. Water Air Soil Pollut 130:17–24

    Article  CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW et al (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  CAS  Google Scholar 

  • Gu B, Ge Y, Ren Y et al (2012) Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ Sci Technol 46:9420–9427

    Article  CAS  Google Scholar 

  • Gu B, Ju X, Chang J et al (2015) Integrated reactive nitrogen budgets and future trends in China. Proc Natl Acad Sci U S A 112:8792–8797

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  • Li Y, Schichtel BA, Walker JT et al (2016) Increasing importance of deposition of reduced nitrogen in the United States. Proc Natl Acad Sci U S A 113:5874–5879

    Article  CAS  Google Scholar 

  • Liu X, Duan L, Mo J et al (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  Google Scholar 

  • Liu X, Zhang Y, Han W et al (2013) Enhanced nitrogen deposition over China. Nature 494:459–462

    Article  CAS  Google Scholar 

  • Liu F, Zhang Q, Zheng B et al (2016a) Recent reduction in NOx emissions over China: synthesis of satellite observations and emission inventories. Environ Res Lett 11:114002

    Article  Google Scholar 

  • Liu X, Xu W, Du E et al (2016b) Reduced nitrogen dominated nitrogen deposition in the US, but its contribution to nitrogen deposition in China decreased. Proc Natl Acad Sci U S A 113:E3590–E3591

    Article  CAS  Google Scholar 

  • Liu X, Vitousek P, Chang Y et al (2016c) Evidence for a historic change occurring in China. Environ Sci Technol 50:505–506

    Article  CAS  Google Scholar 

  • Liu X, Xu W, Duan L et al (2017) Atmospheric nitrogen emission, deposition, and air quality impacts in China: an overview. Curr Pollut Rep 3:65–77

    Article  CAS  Google Scholar 

  • Ramanathan V, Feng Y (2009) Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos Environ 43:37–50

    Article  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Schulze ED (1989) Air pollution and forest decline in a spruce (Picea abies) forest. Science 244:776–783

    Article  CAS  Google Scholar 

  • Song L, Bao XM, Liu XJ et al (2012) Impact of nitrogen addition on plant community in a semi-arid temperate steppe in China. J Arid Land 4:3–10

    Article  Google Scholar 

  • Sutton MA, Howard CM, Erisman JW et al (eds) (2011) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge

    Google Scholar 

  • Tian D, Du E, Jiang L et al (2018) Responses of forest ecosystems to increasing N deposition in China: a critical review. Environ Pollut 243:75–86

    Article  CAS  Google Scholar 

  • Tørseth K, Aas W, Breivik K et al (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos Chem Phys 12:5447–5481

    Article  Google Scholar 

  • Vet R, Artz RS, Carou S et al (2014) A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos Environ 93:3–100

    Article  CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Menge DN, Reed SC et al (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Phil Trans R Soc B 368:20130119

    Article  Google Scholar 

  • Wu Y, Gu B, Erisman J et al (2016) PM2.5 pollution is substantially affected by ammonia emissions in China. Environ Pollut 216:86–94

    Article  CAS  Google Scholar 

  • Yu G, Jia Y, He N et al (2019) Stabilisation of atmospheric nitrogen deposition in China over the past decade. Nat Geosci 12:424–429

    Article  CAS  Google Scholar 

  • Yue P, Cui XQ, Gong YM et al (2019) Fluxes of N2O, CH4 and soil respiration as affected by water and nitrogen addition in a temperate desert. Geoderma 337:770–772

    Article  CAS  Google Scholar 

  • Zhang X, Wang Y, Niu T et al (2012) Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos Chem Phys 12:779–799

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejun Liu or Enzai Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X., Du, E. (2020). An Overview of Atmospheric Reactive Nitrogen in China from a Global Perspective. In: Liu, X., Du, E. (eds) Atmospheric Reactive Nitrogen in China. Springer, Singapore. https://doi.org/10.1007/978-981-13-8514-8_1

Download citation

Publish with us

Policies and ethics