Skip to main content

A New Approach to Control Assembly Variation in Selective Assembly Using Hierarchical Clustering

  • Conference paper
  • First Online:
  • 875 Accesses

Abstract

Complex assembly constitutes more than two parts. Tolerances assigned to individual components decide precision of assembly. Clearance and variation resulted in assembly decides precision of assembly and affect performance during working of assembly. During high precision mechanical assemblies, many parts become surplus due to more variation on component tolerances. Then, selective assembly is only solution to control the clearance variation. In this paper, a new methodology of hierarchical clustering approach is developed to predict the precision in assembly variation so that an assembly can confirm the desired clearance specifications. A valve train assembly of an IC engine that consists of cam-tappet-stem, is considered for the case analysis. The proposed methodology can be implemented in any number of components in real situations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mansoor, E.M.: Selective assembly—Its analysis and applications. Int. J. Prod. Res. 1, 13–24 (1961). https://doi.org/10.1080/00207546108943070

    Article  Google Scholar 

  2. Arai, T., Takeuchi, K.: A simulation system on assembly accuracy. CIRP Ann. 41(1), 37 (1992). STC A

    Article  Google Scholar 

  3. Fang, X.D., Zhang, Y.: A new algorithm for minimizing the surplus parts in selective assembly. Comput. Ind. Eng. 28(2), 341–350 (1995)

    Article  Google Scholar 

  4. Wang, Y.: Semantic tolerancing with generalised intervals. Comput.-Aided Des. Appl. 4(1–4), 257–266 (2007)

    Article  Google Scholar 

  5. Kannan, S., Jayabalan, V., Jeevanantham, K.: Genetic algorithm for minimizing assembly variation in selective assembly. Int. J. Prod. Res. 41, 3301–3313 (2003). https://doi.org/10.1080/0020754031000109143

    Article  Google Scholar 

  6. Kannan, S.M., Jeevanantham, A.K., Jayabalan, V.: Modelling and analysis of selective assembly using Taguchi’s loss function. Int. J. Prod. Res. 46, 4309–4330 (2008). https://doi.org/10.1080/00207540701241891

    Article  MATH  Google Scholar 

  7. Matsuura, S., Shinozaki, N.: Optimal binning strategies under squared error loss in selective assembly with measurement error. Commun. Stat.-Theory Methods 36, 2863–2876 (2007). https://doi.org/10.1080/03610920701386984

    Article  MathSciNet  MATH  Google Scholar 

  8. Fischer, B.R.: Mechanical Tolerance Stackup and Analysis, 2nd edn. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  9. Desrochers, A., Riviere, A.: A matrix approach to the representation of tolerance zones and clearances. Int. J. Adv. Manuf. Technol. 13, 630–636 (1997)

    Article  Google Scholar 

  10. Singh, P.K., Jain, S.C., Jain, P.K.: Advanced optimal tolerance design of mechanical assemblies with interrelated dimension chains and process precision limits. Comput. Ind. 56, 179–194 (2005)

    Article  Google Scholar 

  11. Marziale, M., Polini, W.: A review of two models for tolerance analysis of an assembly: vector loop and matrix. Int. J. Adv. Manuf. Technol. 43, 1106–1123 (2009)

    Article  Google Scholar 

  12. Khodaygan, S., Movahhedy, M.R., Fomani, M.S.: Tolerance analysis of mechanical assemblies based on modal interval and small degrees of freedom (MI-SOF) concept. Int. J. Adv. Manuf. Technol. 50, 1041–1061 (2010)

    Article  Google Scholar 

  13. Cao, Y., Zhang, H., Mao, J., Xusong, X., Yang, J.: Study on tolerance modeling of complex surfaces. Int. J. Adv. Manuf. Technol. 53, 1183–1188 (2011)

    Article  Google Scholar 

  14. Weihua, N., Zhenqiang, Y.: Cylindricity modeling and tolerance analysis for cylindrical components. Int. J. Adv. Manuf. Technol. 64, 867–874 (2013)

    Article  Google Scholar 

  15. Bo, C., Yang, Z., Wang, L., Chen, H.: A comparison of tolerance analysis models for assembly. Int. J. Adv. Manuf. Technol. 68, 739–754 (2013)

    Article  Google Scholar 

  16. Yang, Z., Popov, A.A., McWilliams, S.: Variation propagation control in mechanical assembly of cylindrical components. J. Manuf. Syst. 31, 162–176 (2012)

    Article  Google Scholar 

  17. Chen, H., Jin, S., Li, Z., Lai, X.: A comprehensive study of three dimensional tolerance analysis methods. Comput.-Aided Des. 53, 1–13 (2014)

    Article  Google Scholar 

  18. Calvo, R., Gómez, E., Domingo, R.: Vectorial method of minimum zone tolerance for flatness, straightness, and their uncertainty estimation. Int. J. Precis. Eng. Manuf. 15(1), 31–44 (2014)

    Article  Google Scholar 

  19. Laosiritaworn, W., Kitjongtawornkul, P., Pasui, M., Wansom, W.: ‘Die storage improvement with k-means clustering algorithm’, a case of paper packaging business. In: 4th International Symposium on Computational and Business Intelligence, pp. 212–215 (2016). 7743286

    Google Scholar 

  20. Söderberg, R., et al.: An information and simulation framework for increased quality in welded components. CIRP Ann. – Manuf. Technol. (2018). https://doi.org/10.1016/j.cirp.2018.04.118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chaitanya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaitanya, S.V., Jeevanantham, A.K. (2020). A New Approach to Control Assembly Variation in Selective Assembly Using Hierarchical Clustering. In: Gunjan, V., Singh, S., Duc-Tan, T., Rincon Aponte, G., Kumar, A. (eds) ICRRM 2019 – System Reliability, Quality Control, Safety, Maintenance and Management. ICRRM 2019. Springer, Singapore. https://doi.org/10.1007/978-981-13-8507-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8507-0_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8506-3

  • Online ISBN: 978-981-13-8507-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics