Skip to main content

Biofilm and Antibiotic Resistance in Acinetobacter baumannii

  • Chapter
  • First Online:
Bacterial Adaptation to Co-resistance

Abstract

Biofilms are the protective armour formed by the bacterial pathogens constituting polysaccharides, proteins and DNA which them inaccessible for antibiotics and other biocides. The strategy employed by nosocomial pathogens such as Acinetobacter baumannii, for survival in hospital their exceptional ability to produce highly resistant biofilms. Biofilms assist these bacteria to thrive in adverse conditions such as desiccation, nutrient depletion and physiological stress. A. baumannii secretes exopolysaccharides once it has successfully adhered to a surface hydrophilic like glass or hydrophobic such as host cell surfaces. A. baumannii being listed by WHO as the leading antibiotic-resistant priority pathogens list for which there is an urgent need to develop new antibiotics, this chapter will summarise the existing knowledge on the stages in biofilm formation, architecture of biofilm matrix, genetic regulation of biofilm formation in A. baumannii and recent developments in biofilm inhibiting/dispersing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman DL, Craft KM, Doster RS, Weitkamp JH, Aronoff DM, Gaddy JA et al (2017) Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii. ACS Infect Dis 4:315–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahador A, Taheri M, Pourakbari B, Hashemizadeh Z, Rostami H, Mansoori N et al (2013) Emergence of rifampicin, tigecycline, and colistin-resistant Acinetobacter baumannii in Iran; spreading of MDR strains of novel international clone variants. Microb Drug Resist 19:397–406

    Article  CAS  PubMed  Google Scholar 

  • Bales PM, Renke EM, May SL, Shen Y, Nelson DC (2013) Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One 8:e67950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentancor LV, Routray A, Bozkurt-Guzel C, Camacho-Peiro A, Pier GB, Maira-Litrán T (2012) Evaluation of the trimeric autotransporter Ata as a vaccine candidate against Acinetobacter baumannii infections. Infect Immun 80:3381–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava N, Sharma P, Capalash N (2010) Quorum sensing in Acinetobacter: an emerging pathogen. Crit Rev Microbiol 36:349–360

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  CAS  PubMed  Google Scholar 

  • Brossard KA, Campagnari AA (2012) The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun 80:228–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerqueira GM, Kostoulias X, Khoo C, Aibinu I, Qu Y, Traven A et al (2014) A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway. J Infect Dis 210:46–55

    Article  CAS  PubMed  Google Scholar 

  • Choi CH, Lee JS, Lee YC, Park TI, Lee JC (2008) Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 8:216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi AHK, Slamti L, Avci FY, Pier GB, Maira-Litrán T (2009) The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 191:5953–5963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multi-drug resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Murray GL, Peleg AY (2015) Acinetobacter baumannii: evolution of antimicrobial resistance - treatment options in seminars in respiratory and critical care medicine, p 85

    Google Scholar 

  • Eijkelkamp BA, Stroeher UH, Hassan KA, Elbourne LDH, Paulsen IT, Brown MH (2013) H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infect Immun 81:2574–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinal P, Martí S, Vila J (2012) Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect 80:56–60

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Sambanthamoorthy K, Palys T, Paranavitana C (2013) The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 49:131–137

    Article  CAS  PubMed  Google Scholar 

  • Gaddy JA, Tomaras AP, Actis LA (2009) The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 77:3150–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giamarellou H, Antoniadou A, Kanellakopoulou K (2008) Acinetobacter baumannii: a universal threat to public health? Int J Antimicrob Agents 32:106–119

    Article  CAS  PubMed  Google Scholar 

  • Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK et al (2014) Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 58:1622–1629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Høiby N, Ciofu O, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5:1663–1674

    Article  PubMed  Google Scholar 

  • Hughes KA, Sutherland IW, Clark J, Jones MV (1998) Bacteriophage and associated polysaccharide depolymerases – novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590

    Article  CAS  PubMed  Google Scholar 

  • Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. In: Bacterial biofilms. Springer, Heidelberg, pp 67–84

    Chapter  Google Scholar 

  • Iwashkiw JA, Seper A, Weber BS, Scott NE, Vinogradov E, Stratilo C et al (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 8:e1002758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karunanidhi A, Ghaznavi-Rad E, Hamat RA, Pichika MR, Lung LTT, Mohd Fauzi F et al (2018) Antibacterial and antibiofilm activities of nonpolar extracts of Allium stipitatum regel against multidrug resistant Bacteria. Biomed Res Int:9845075

    Google Scholar 

  • Kim M, Kang N, Ko S, Park J, Park E, Shin D et al (2018) Antibacterial and antibiofilm activity and mode of action of Magainin 2 against drug-resistant Acinetobacter baumannii. Int J Mol Sci 19:3041

    Article  PubMed Central  CAS  Google Scholar 

  • La Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lees-Miller RG, Iwashkiw JA, Scott NE, Seper A, Vinogradov E, Schild S, Feldman MF (2013) A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol 89:816–830

    Article  CAS  PubMed  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Longo F, Vuotto C, Donelli G (2014) Biofilm formation in Acinetobacter baumannii. New Microbiol 37:119–127

    CAS  PubMed  Google Scholar 

  • Moghimi R, Aliahmadi A, Rafati H, Abtahi HR, Amini S, Feizabadi MM (2018) Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii. J Mol Liq 265:765–770

    Article  CAS  Google Scholar 

  • Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep 7:6953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51:3471–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836

    Article  CAS  PubMed  Google Scholar 

  • Roca I, Espinal P, Vila-Farrés X, Vila J (2012) The Acinetobacter baumannii oxymoron: commensal hospital dweller turned pan-drug-resistant menace. Front Microbiol 23:148

    Google Scholar 

  • Rodríguez-Baño J, Martí S, Soto S, Fernández-Cuenca F, Cisneros JM, Pachón J et al (2008) Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect 14:276–278

    Article  PubMed  Google Scholar 

  • Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM et al (2014) Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling 30:17–28

    Article  CAS  PubMed  Google Scholar 

  • Saranathan R, Pagal S, Sawant AR, Tomar A, Madhangi M, Sah S et al (2017) Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence in Acinetobacter baumannii. Virulence 8:1316–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoodley P, Hall-Stoodley L, Lappin-Scott HM (2001) Detachment, surface migration, and other dynamic behavior in bacterial biofilms revealed by digital time-lapse imaging. Methods Enzymol 337:306–319

    Article  CAS  PubMed  Google Scholar 

  • Stowe SD, Thompson RJ, Peng L, Su Z, Blackledge MS, Draughn GL et al (2015) Membrane-permeabilizing activity of reverse-amide 2-aminoimidazole antibiofilm agents against Acinetobacter baumannii. Curr Drug Deliv 12:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    Article  CAS  PubMed  Google Scholar 

  • Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484

    Article  CAS  PubMed  Google Scholar 

  • Tomaras AP, Flagler MJ, Dorsey CW, Gaddy JA, Actis LA (2008) Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology 154:3398–3409

    Article  CAS  PubMed  Google Scholar 

  • Vidal R, Dominguez M, Urrutia H, Bello H, Gonzalez G, Garcia A et al (1996) Biofilm formation by Acinetobacter baumannii. Microbios 86:49–58

    CAS  PubMed  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarrilli R, Giannouli M, Tomasone F, Triassi M, Tsakris A (2009) Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. J Infect Dev Ctries 3:335–341

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajagopalan Saranathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saranathan, R., Pagal, S., Prashanth, K. (2019). Biofilm and Antibiotic Resistance in Acinetobacter baumannii. In: Mandal, S., Paul, D. (eds) Bacterial Adaptation to Co-resistance. Springer, Singapore. https://doi.org/10.1007/978-981-13-8503-2_9

Download citation

Publish with us

Policies and ethics