Skip to main content

Knowledge Gaps and Research Needs in Bacterial Co-Resistance in the Environment

  • Chapter
  • First Online:
Book cover Bacterial Adaptation to Co-resistance

Abstract

This chapter describes the different factors that increase or stimulate the presence of resistance to antibiotics in bacteria in the environment. Particular factors accentuating the spread and evolution of antibiotic resistance are various pollutants such as heavy metals, disinfectant products, other organic pollutants and nutrients.

In particular, co-factors inducing resistance in water and sediments are explained. A particular emphasis is placed on the co-selection of antibiotic resistance genes due to the presence of metals, both in soil and in waters. Moreover, the role of nutrients and other organic contaminants in improving antibiotic resistance in bacteria is also highlighted. Finally, the role of the disinfection of waters and wastewaters in abatement of antibiotic resistance genes is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705

    Article  PubMed  Google Scholar 

  • Alexander J, Knopp G, Dötsch A, Wieland A, Schwartz T (2016) Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Sci Tot Environ 559:103–112

    Article  CAS  Google Scholar 

  • Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J, Morais MC, Cunha-Queda C (2015) Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manag 40:44–52

    Article  CAS  PubMed  Google Scholar 

  • Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson DI, Hughes D (2010) Antibiotics resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260–271

    Article  CAS  PubMed  Google Scholar 

  • Antonelli M, Turolla A, Mezzanotte V, Nurizzo C (2013) Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment. Water Sci Technol 68(12):2638–2644

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  CAS  PubMed  Google Scholar 

  • Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C (2019) Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environ Res 169:483–493

    Article  CAS  PubMed  Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13(5):310–317

    Article  CAS  PubMed  Google Scholar 

  • Berg J, Tom-Petersen A, Nybroe O (2005) Copper amendment of agricultural soil selects for bacterial antibiotics resistance in the field. Lett Appl Microbiol 40(2):146–151

    Article  CAS  PubMed  Google Scholar 

  • Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ, Nybroe O (2012) Selection for cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term cu exposure. Appl Environ Microbiol 78:7438–7446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4(1):pii E14

    Article  CAS  Google Scholar 

  • Brandt KK, Frandsen RJN, Holm PE, Nybroe O (2010) Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biol Biochem 42(5):748–757

    Article  CAS  Google Scholar 

  • Burridge LE, Weis JS, Cabello F, Pizarro JC, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306(1–4):7–23

    Article  CAS  Google Scholar 

  • Carey DE, McNamara PJ (2015) The impact of triclosan on the spread of antibiotic resistance in the environment. Front Microbiol 5:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Carey DE, Zitomer DH, Hristova KR, Kappell AD, McNamara PJ (2016) Triclocarban influences antibiotic resistance and alters anaerobic digester microbial community structure. Environ Sci Technol 50(1):126–134

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Sankhwar M (2011) Influence of lignin, pentachlorophenol and heavy metal on antibiotic resistance of pathogenic bacteria isolated from pulp paper mill effluent contaminated river water. J Environ Biol 32(6):739–745

    CAS  PubMed  Google Scholar 

  • Chen B, He R, Yuan K, Chen E, Lin L, Chen X, Sha S, Zhong J, Lin L, Yang L, Yang Y, Wang X, Zou S, Luan T (2017) Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils. Environ Pollut 220(Pt B):1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Cheng WX, Li JN, Wu Y, Xu LK, Su C, Qian YY, Zhu YG, Chen H (2016) Behavior of antibiotics and antibiotics resistance genes in eco-agricultural system: a case study. J Hazard Mater 304:18–25

    Article  CAS  PubMed  Google Scholar 

  • Cho M, Kim J, Kim JY, Yoon J, Kim J-H (2010) Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res 44:3410–3418

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Curiao T, Marchi E, Viti C, Oggioni MR, Baquero F, Martinez JL, Coque TM (2015) Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrobiol Agents Chem 59:3413–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czekalski N, Gascón Díez E, Bürgmann H (2014) Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. ISME J 8(7):1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461

    Article  PubMed  CAS  Google Scholar 

  • Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Cat B 98:27–38

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on antimicrobial properties. Colloids Surf B Biointerfaces 79:5–18

    Article  CAS  PubMed  Google Scholar 

  • Devarajan N, Laffite A, Graham ND, Meijer M, Prabakar K, Mubedi JI, Elongo V, Mpiana PT, Ibelings BW, Wildi W, Poté J (2015) Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in central europe. Environ Sci Technol 49(11):6528–6537

    Article  CAS  PubMed  Google Scholar 

  • Di Cesare A, Eckert EM, Teruggi A, Fontaneto D, Bertoni R, Callieri C, Corno G (2015) Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Mol Ecol 24(15):3888–3900

    Article  PubMed  CAS  Google Scholar 

  • Di Cesare A, Fontaneto D, Doppelbauer J, Corno G (2016a) Fitness and recovery of bacterial communities and antibiotic resistance genes in urban wastewaters exposed to classical disinfection treatments. Environ Sci Technol 50(18):10153–10161

    Article  PubMed  CAS  Google Scholar 

  • Di Cesare A, Eckert EM, D'Urso S, Bertoni R, Gillan DC, Wattiez R, Corno G (2016b) Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res 94:208–214

    Article  PubMed  CAS  Google Scholar 

  • Di Cesare A, Eckert EM, Corno G (2016c) Co-selection of antibiotic and heavy metal resistance in freshwater bacteria. J Limnol 75(s2):59–66

    Article  Google Scholar 

  • Di Cesare A, Eckert EM, Rogora M, Corno G (2017) Rainfall increases the abundance of antibiotic resistance genes within a riverine microbial community. Environ Pollut 226:473–478

    Article  PubMed  CAS  Google Scholar 

  • Dunlop PSM, Sheeran CP, Byrne JA, McMahon MAS, Boyle MA, McGuigan KG (2010) Inactivation of clinically relevant pathogens by photocatalytic coatings. J Photochem Photobiol 216:303–310

    Article  CAS  Google Scholar 

  • Eckert EM, Di Cesare A, Coci M, Corno G (2018) Persistence of antibiotic resistance genes in large subalpine lakes: the role of anthropogenic pollution and ecological interactions. Hydrobiologia 824(1):93–108

    Article  CAS  Google Scholar 

  • Fard RM, Heuzenroeder MW, Barton MD (2011) Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Vet Microbiol 148:276–282

    Article  CAS  PubMed  Google Scholar 

  • FDA, Food and Drug Administration (2017) FDA in brief: FDA issues final rule on safety and effectiveness for certain active ingredients in over-the-counter health care antiseptic hand washes and rubs in the medical setting. https://www.fda.gov/newsevents/newsroom/fdainbrief/ucm589474.htm

  • Fiorentino A, Ferro G, Alferez MC, Polo-Lopez MI, Fernandez-Ibanez P, Rizzo L (2015) Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. J Photochem Photobiol 148:43–50

    Article  CAS  Google Scholar 

  • Fiorentino A, Cucciniello R, Di Cesare A, Fontaneto D, Prete P, Rizzo L, Corno G, Proto A (2018) Disinfection of urban wastewater by a new photo-Fenton like process using cu-iminodisuccinic acid complex as catalyst at neutral pH. Water Res 146:206–215

    Article  CAS  PubMed  Google Scholar 

  • Fiorentino A, Di Cesare A, Eckert EM, Rizzo L, Fontaneto D, Yang Y, Corno G (2019) Impact of industrial wastewater on the dynamics of antibiotic resistance genes in a full-scale urban wastewater treatment plant. Sci Tot Environ 646:1204–1210

    Article  CAS  Google Scholar 

  • Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44:143–158

    Article  CAS  Google Scholar 

  • Formisano F, Fiorentino A, Rizzo L, Carotenuto M, Pucci L, Giugni M, Lofrano G (2016) Inactivation of Escherichia coli and enterococci in urban wastewater by sunlight/PAA and sunlight/H2O2 processes. Process Saf Environ Prot 104(Part A):178–184

    Article  CAS  Google Scholar 

  • Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature 509:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehr R, Wagner M, Veerasubramanian P, Payment P (2003) Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Res 37:4573–4586

    Article  CAS  PubMed  Google Scholar 

  • Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9:1269–1279

    Article  CAS  PubMed  Google Scholar 

  • Gorovtsov AV, Sazykin IS, Sazykina MA (2018) The influence of heavy metals, polyaromatic hydrocarbons, and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. Environ Sci Pollut Res Int 25(10):9283–9292

    Article  CAS  PubMed  Google Scholar 

  • Grenni P, Ancona V, Barra Caracciolo A (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136C:25–39

    Article  CAS  Google Scholar 

  • Guo X, Yang Y, Lu D, Niu Z, Feng J, Chen Y, Tou F, Garner E, Xu J, Liu M, Hochella MF (2018) Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary. Water Res 129:277–286

    Article  CAS  PubMed  Google Scholar 

  • Han F, Kingery W, Selim H (2001) Accumulation, redistribution, transport and bioavailability of heavy metals in waste amended soils. In: Iskander I, Kirkham M (eds) Trace elements in soil: bioavailability, fluxes and transfer. CRC, Boca Raton, pp 141–168

    Google Scholar 

  • Han FX, Banin A, Su Y, Monts DL, Plodinec JM, Kingery WL et al (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    Article  CAS  PubMed  Google Scholar 

  • Hu HW, Wang JT, Li J, Shi XZ, Ma YB, Chen D, He JZ (2016) Field-based evidence for copper contamination induced changes of antibiotics resistance in agricultural soils. Environ Microbiol 18(11):3896–3909

    Article  CAS  PubMed  Google Scholar 

  • Hu HW, Wang JT, Li J, Shi XZ, Ma YB, Chen DL, He JZ (2017) Long-term nickel contamination increases the occurrence of antibiotics resistance genes in agricultural soils. Environ Sci Technol 51(2):790–800

    Article  CAS  PubMed  Google Scholar 

  • Imfeld G, Bringel F, Vuilleumier S (2011) Bacterial tolerance in contaminated soils: potential of the PICT approach in microbial ecology. In: Amiard-Triquet C, Rainbow PS, Roméo M (eds) Tolerance to environmental contaminants. CRC Press, Boca Raton, Chapter 14

    Google Scholar 

  • Ji X, Shen Q, Liu F, Ma J, Xu G, Wang Y, Wu M (2012) Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater 235–236:178–185

    Article  PubMed  CAS  Google Scholar 

  • Johnson TA, Stedtfeld RD, Wang Q, Cole JR, Hashsham SA, Looft T et al (2016) Clusters of antibiotic resistance genes enriched together stay together in swine agriculture. MBio 7:e02214–e02215

    Google Scholar 

  • Ju F, Beck K, Yin X, Maccagnan A, McArdell CS, Singer HP, Johnson DR, Zhang T, Bürgmann H (2018) Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME J 13:346–360. https://doi.org/10.1038/s41396-018-0277-8

    Article  PubMed  Google Scholar 

  • Jutkina J, Marathe NP, Flach CF, Larsson DGJ (2018) Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci Total Environ 616(617):172–178

    Article  PubMed  CAS  Google Scholar 

  • Kaweeteerawat C, Na Ubol P, Sangmuang S, Aueviriyavit S, Maniratanachote R (2017) Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles. J Toxicol Environ Health A 80(23–24):1276–1289

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi Y, Sunada K, Iyada T, Hashimoto K, Fujishima A (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A 160:51–56

    Article  Google Scholar 

  • Klamerth N, Rizzo L, Malato S, Maldonado MI, Aguera A, Fernandez-Alba AR (2010) Degradation of fifteen emerging contaminants at μg L−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Res 44:545–554

    Article  CAS  PubMed  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Li LG, Xia Y, Zhang T (2017) Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J 11(3):651–662

    Article  CAS  PubMed  Google Scholar 

  • Liberti L, Notarnicola M, Petruzzelli D (2002) Advanced treatment for municipal wastewater reuse in agriculture. UV disinfection: parasite removal and by-product formation. Desalination 152:315–324

    Article  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Wilson CA, Novak JT, Riffat R, Aynur S, Murthy S, Pruden A (2011) Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons. Environ Sci Technol 45(18):7855–7861

    Article  CAS  PubMed  Google Scholar 

  • Manaia CM (2017) Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol 25(3):173–181

    Article  CAS  PubMed  Google Scholar 

  • Makowska N, Koczura R, Mokracka J (2016) Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water. Chemosphere 144:1665–1673

    Article  CAS  PubMed  Google Scholar 

  • Marcato CE, Pinelli E, Cecchi M, Winterton P, Guiresse M (2009) Bioavailability of Cu and Zn in raw and anaerobically digested pig slurry. Ecotoxicol Environ Saf 72(5):1538–1544

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2014) General principles of antibiotic resistance in bacteria. Drug Discov Today Technol 11:33–39

    Article  PubMed  Google Scholar 

  • McKinney CW, Loftin KA, Meyer MT, Davis JG, Pruden A (2010) Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44(16):6102–6109

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin MJ, Smolders MJ (2001) Background zinc concentrations in soil affect the zinc sensitivity of soil microbial processes—a rationale for a metalloregion approach to risk assessments. Environ Toxicol Chem Nov 20(11):2639–2643

    CAS  PubMed  Google Scholar 

  • Melnyk A, Wong A, Kassen R (2015) The fitness costs of antibiotic resistance mutations. Evol Appl 8:273–283

    Article  PubMed  Google Scholar 

  • Monteiro SC, Boxall ABA (2010) Occurrence and fate of human pharmaceuticals in the environment. Rev Environ Contam Toxicol 202:153–154

    Google Scholar 

  • Munir M, Wong K, Xagorarak I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–693

    Article  CAS  PubMed  Google Scholar 

  • Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, Gaze WH (2018) Novel insights into selection for antibiotic resistance in complex microbial communities. MBio 9(4):e00969–e00918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemecek T, Dubois D, Huguenin-Elie O, Gaillard G (2011) Life cycle assessment of Swiss farming systems: I. Integr Org Farm Agric Syst 104:217–232

    Google Scholar 

  • Nikolaou A, Rizzo L, Selcuk H (2007) Control of disinfection by-products in drinking water systems. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DG (2015) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics16:964

    Google Scholar 

  • Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ (2014) BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res 42:D737–D743

    Article  CAS  PubMed  Google Scholar 

  • Pal C, Asiani K, Arya S, Rensing C, Stekel DJ, Larsson DGJ, Hobman JL (2017) Metal resistance and its association with antibiotic resistance. Adv Microb Physiol 70:261–313

    Article  PubMed  Google Scholar 

  • Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. RSC Adv 6:109862–1098772

    Article  CAS  Google Scholar 

  • Perry JA, Wright GD (2013) The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front Microbiol 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45:4311–4340

    Article  CAS  PubMed  Google Scholar 

  • Roberts TL (2014) Cadmium and phosphorus fertilizers: the issues and the science. 2nd international symposium on innovation and Technology in the Phosphate Industry. Procedia Eng 83:52–59

    Google Scholar 

  • Salyers AA, Amábile-Cuevas CF (1997) Why are antibiotic resistance genes so resistant to elimination? Antimicrob Agents Chemother 41:2321–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson H, Fricker C, Brown RS, Majury A, Liss SN (2016) Antibiotics resistance genes as an emerging environmental contaminant. Environ Rev 24:205–218

    Article  Google Scholar 

  • Raja SE, Praveen KR, Baskar G (2018) Microbial transformation of heavy metals. In: Varjani S, Gnansounou E, Gurunathan B, Pant D, Zakaria Z (eds) Waste bioremediation. Energy, environment, and sustainability. Springer, Singapore, pp 249–263

    Chapter  Google Scholar 

  • Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Sgroi M, Roccaro P, Oelker GL, Snyder SA (2014) N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant. Environ Sci Technol 48:10308–10315

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Thakur IS (2009) Identification and characterization of integron mediated antibiotic resistance in pentachlorophenol degrading bacterium isolated from the chemostat. J Environ Sci 21(6):858–864

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Snoeyink VL, Jenkins D (1980) Water chemistry. Wiley, New York

    Google Scholar 

  • Tang X, Lou C, Wang S, Lu Y, Liu M, Hashmi MZ, Liang X, Li Z, Liao Y, Qin W, Fan F, Xu J, Brookes PC (2015) Effects of long-term manure applications on the occurrence of antibiotics and antibiotics resistance genes (ARGs) in paddy soils: evidence from four field experiments in south of China. Soil Biol Biochem 90:179–187

    Article  CAS  Google Scholar 

  • Tao CW, Hsu BM, Ji WT, Hsu TK, Kao PM, Hsu CP, Shen SM, Shen TY, Wan TJ, Huang YL (2014) Evaluation of five antibiotics resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci Total Environ 496:116–121

    Article  CAS  PubMed  Google Scholar 

  • Turolla A, Sabatino R, Fontaneto D, Eckert EM, Colinas N, Corno G, Citterio B, Biavasco F, Antonelli M, Mauro A, Mangiaterra G, Di Cesare A (2017) Defence strategies and antibiotic resistance gene abundance in enterococci under stress by exposure to low doses of peracetic acid. Chemosphere 185:480–488

    Article  CAS  PubMed  Google Scholar 

  • von Wintersdorff CJH, Penders J, vanNiekerk JM, Mills ND, Majumder S, van Alphen LB, Savelkoul PHM, Wolffs PFG (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 7:173

    Google Scholar 

  • Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9(6):e1403

    PubMed  PubMed Central  Google Scholar 

  • Zhang K, Niu ZG, Lv Z, Zhang Y (2017) Occurrence and distribution of antibiotic resistance genes in water supply reservoirs in Jingjinji area, China. Ecotoxicology 26(9):1284–1292

    Article  CAS  PubMed  Google Scholar 

  • Wales AD, Davies RH (2015) Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics (Basel) 4:567–604

    Article  CAS  Google Scholar 

  • Wang J, Ben W, Yang M, Zhang Y, Qiang Z (2016) Dissemination of veterinary antibiotics and corresponding resistance genes from a concentrated swine feedlot along the waste treatment paths. Environ Int 92-93:317–323

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang J, Zhao Z, Chen J, Lu H, Liu G, Zhou J, Guan X (2017) PAHs accelerate the propagation of antibiotic resistance genes in coastal water microbial community. Environ Pollut 231(Pt 1):1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Huang ZT, Yang K, Graham D, Xie B (2015) Relationships between antibiotics and antibiotics resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ Sci Technol 49(7):4122–4128

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Lu R, Chen Y, Qiu J, Deng C, Tan Q (2016) Study of cross-resistance mediated by antibiotics, chlorhexidine and Rhizoma coptidis in Staphylococcus aureus. J Glob Antimicrob Resist 7:61–66

    Article  PubMed  Google Scholar 

  • Xiang Q, Chen QL, Zhu D, An XL, Yang XR, Su JQ, Qiao M, Zhu YG (2018) Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. Environ Pollut 235:525–533

    Article  CAS  PubMed  Google Scholar 

  • Yamaji R, Friedman CR, Rubin J, Suh J, Thys E, McDermott P, Hung-Fan M, Riley LW (2018) A population-based surveillance study of shared genotypes of Escherichia coli isolates from retail meat and suspected cases of urinary tract infections. mSphere 3(4):pii: e00179-18

    Article  Google Scholar 

  • Zhao Y, Cocerva T, Cox S, Tardif S, Su JQ, Zhu YG, Brandt KK (2019) Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Sci Total Environ 656:512–520

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZC, Zheng J, Wei YY, Chen T, Dahlgren RA, Shang X et al (2017) Antibiotic resistance genes in an urban river as impacted by bacterial community and physicochemical parameters. Environ Sci Pollut Res Int 24:23753–22376

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann SG, Wittenwiler M, Hollender J, Krauss M, Ort C, Siegrist H, von Gunten U (2011) Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection. Water Res 45:605–617

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Grenni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grenni, P., Corno, G. (2019). Knowledge Gaps and Research Needs in Bacterial Co-Resistance in the Environment. In: Mandal, S., Paul, D. (eds) Bacterial Adaptation to Co-resistance. Springer, Singapore. https://doi.org/10.1007/978-981-13-8503-2_3

Download citation

Publish with us

Policies and ethics