Skip to main content

Antibiotics and Microbial Antibiotic Resistance in Soil

  • Chapter
  • First Online:
Bacterial Adaptation to Co-resistance

Abstract

Induced antibiotic resistance in both clinical and nonclinical strains, caused by selective agents of antibiotic resistance genes, considered as one of the most important challenges of the present century. Evidences support increasing antibiotic resistance in the organic waste- treated soils which might affect soil biological and functional diversity. Manure, toxic compounds like insecticides, herbicides and chemical fertilizers which contain heavy metals are among the most important origins of antibiotic resistance in soil and dissemination of resistance determinants within ecosystem. Heavy metals could confer antibiotic resistance to microorganisms. Most of heavy metal resistance mechanisms are the same as antibiotic resistance. In most soils, heavy metal concentration is also much higher than antibiotic concentration. Therefore, it seems that the first option to control antibiotic resistance is the evaluating of resistance degree in specific habitats like soil, underground waters and manures which could participate in increasing the antibiotic resistance in the environment. Hence, the present paper aims to show the importance of antibiotics in soil and their impact on microbial functions and antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alighardashi A, Rashidi A, Neshat AA et al (2014) Environmental risk of selected antibiotics in Iran. IJHSE 1(3):132–137

    Google Scholar 

  • Amin MM, Hashemi H, Ebrahimi A et al (2012) Effects of oxytetracycline, tylosin, and amoxicillin antibiotics on specific methanogenic activity of anaerobic biomass. Int J Env Health Eng 1(4):1–4

    Google Scholar 

  • Ansari F (2001) Use of systematic anti-infectives agent in Iran during 1997-1998. Eur J Clin Pharmacol 57(6–7):547–551

    Article  CAS  PubMed  Google Scholar 

  • Baltz RH (2006) Marcel Faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33:507–513

    Article  CAS  PubMed  Google Scholar 

  • Baquero F, Alvarez-Ortega C, Martinez J (2009) Ecology and evolution of antibiotic resistance. Environ Microbiol Rep 1:469–476

    Article  CAS  PubMed  Google Scholar 

  • Berg J, Tom Petersen A, Nybroe O (2005) Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett Appl Microbiol 40:146–151

    Article  CAS  PubMed  Google Scholar 

  • Bibbal D, Dupouy V, Ferré JP et al (2007) Impact of three ampicillin dosage regimens on selection of ampicillin resistance in Enterobacteriaceae and excretion of blaTEM genes in swine feces. Appl Environ Microbiol 73:4785–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binh CTT, Heuer H, Kaupenjohann M et al (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37

    Article  CAS  PubMed  Google Scholar 

  • Binh CTT, Heuer H, Gomes NCM et al (2010) Similar bacterial community structure and high abundance of sulfonamide resistance genes in field-scale manures. In Manure: management, uses and environmental impacts. Dellaguardia CS. Hauppauge, NY, New York: Nova Science Publishers, p141–166.

    Google Scholar 

  • Boxall AB, Blackwell P, Cavallo R et al (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  PubMed  Google Scholar 

  • Bradbury JF (1986) Guide to plant pathogenic bacteria. CAB international, Kew, pp. xviii + 332pp

    Google Scholar 

  • Burkhardt M, Stamm C, Waul C et al (2005) Surface runoff and transport of sulfonamide antibiotics and tracers on manured grassland. J Environ Qual 34:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Byrne-Bailey K, Gaze WH, Kay P, Boxall A, Hawkey PM, Wellington EM (2009) Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrob Agents Chemother 53:696–702

    Article  CAS  PubMed  Google Scholar 

  • Casjens S (1998) The diverse and dynamic structure of bacterial genomes. Ann Rev Genet 32:339–377

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Liu W, Pan N et al (2013) Oxytetracycline on functions and structure of soil microbial community. J Soil Sci Plant Nutr 13(4):967–975

    Google Scholar 

  • Chessa L, Pusino G, Pasqualina Mangia N (2016) Soil microbial response to tetracycline in two different soils amended with cow manure. Environ Sci Pollut Res 23:5807–5817

    Article  CAS  Google Scholar 

  • Clewell DB, Flannagan SE, Jaworski DD (1995) Unconstrained bacterial promiscuity: the Tn916–Tn1545 family of conjugative transposons. Trends Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Cobine P, Wickramasinghe WA, Harrison MD et al (1999) The Enterococcus hirae copper chaperone CopZ delivers copper (I) to the CopY repressor. FEBS Lett 445:27–30

    Article  CAS  PubMed  Google Scholar 

  • Dantas G, Sommer MO, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320:100–103

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Spiegelman GB, Yim G (2006) The world of sub-inhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453

    Article  CAS  PubMed  Google Scholar 

  • Ding GC, Radi V, Ter-Hai BS et al (2014) Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine. PLoS One 9(3):1–10

    Google Scholar 

  • Eager RM, Cunningham CC, Senzer N, Richards DA, Raju RN, Jones B et al (2009) Phase II trial of talabostat and docetaxel in advanced non-small cell lung cancer. Clin Oncol (R Coll Radiol) 21(6):464–472

    Article  CAS  Google Scholar 

  • Ebadi S, Sohrabi H, Peymani A et al (2018) Identification of antibiotic-producing Streptomyces species in Iran’s soil by phenotypic and genotypic methods. Biotech Health Sci 5(1):e59854

    Google Scholar 

  • Enne VI, Cassar C, Sprigings K et al (2008) A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiol Lett 278:193–199

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Pedersen JA (2005) Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ Sci Technol 39:9509–9516

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J 1:191–203

    Article  CAS  PubMed  Google Scholar 

  • Gotz A, Smalla K (1997) Manure enhances plasmid mobilization and survival of Pseudomonas putida introduced into field soil. Appl Environ Microbiol 63:1980–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK et al (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  • Hammesfahr U, Kotzerke A, Lamshöft M, Wilke BM, Kandeler E, Thiele-Bruhn S (2011) Effects of sulfadiazine-contaminated fresh and stored manure on a soil microbial community. Eur J Soil Biol 47:61–68

    Article  Google Scholar 

  • Hamscher G, Sczesny S, Höper H et al (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Han I, Congeevaram S, Park J (2009) Improved control of multiple-antibiotic-resistance-related microbial risk in swine manure wastes by autothermal thermophilic aerobic digestion. Water Sci Technol 59(2):267–271

    Article  PubMed  Google Scholar 

  • Heise J, Höltge S, Schrader S et al (2006) Chemical and biological characterization of non-extractable sulfonamide residues in soil. Chemosphere 65:2352–2357

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Smalla K (2007a) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Smalla K (2007b) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Krogerrecklenfort E, Wellington EMH, Egan S, Van Elsas JD, Van Overbeek L et al (2002) Gentamycin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302

    Article  CAS  PubMed  Google Scholar 

  • Huddleston AS, Cresswell N, Neves M et al (1997) Molecular detection of streptomycin-producing streptomycetes in Brazilian soils. Appl Environ Microbiol 63:1288–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari N, Behroozi R, Farajzadeh D et al (2014) Antibacterial activity of Pseudonocardia sp. JB05, a rare salty soil actinomycete against Staphylococcus aureus. Biomed Res Int 2014:1–7. https://doi.org/10.1155/2014/182945

    Article  CAS  Google Scholar 

  • Jayalakshmi K, Paramasivan M, Sasikala M et al (2017) Review on antibiotic residues in animal products and its impact on environments and human health. J Entomol Zool Stud 5(3):1446–1451

    Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61–75

    Article  CAS  PubMed  Google Scholar 

  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64:2780–2787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kachur AV, Koch CJ, Biaglow JE (1998) Mechanism of copper-catalyzed oxidation of glutathione. Free Radic Res 28:259–269

    Article  CAS  PubMed  Google Scholar 

  • Klein EY, Van Boeckel TP, Martinez EM et al (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA (PNAS) 115(15):E3463–E3470. https://doi.org/10.1073/pnas.1717295115

    Article  CAS  Google Scholar 

  • Kong WD, Zhu YG, Fu BJ et al (2006) The veterinary antibiotic Oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ Pollut 143:129–137

    Article  CAS  PubMed  Google Scholar 

  • Kong WD, Li CG, Dolhi JM et al (2012) Characteristics of Oxytetracycline sorption and potential bioavailability in soils with various physical-chemical properties. Chemosphere 87:542–548

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Gupta SC, Chander Y et al (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment–a review–part I. Chemosphere 75:417–434

    Article  PubMed  CAS  Google Scholar 

  • Levy SB (2002) The antibiotic paradox: how the misuse of antibiotics destroys their curative powers, 2nd edn. Int Microbiol 5:155–156. https://doi.org/10.1007/s10123-002-0082-z.

    Article  Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yu Y, Yang Z et al (2016) A comparison of metal distribution in surface dust and soil among super city, town, and rural area. Environ Sci Pollut Res 23:7849–7860

    Article  CAS  Google Scholar 

  • Lin H, Jin D, Freitag TE et al (2016) A compositional shift in the soil microbiome induced by tetracycline, sulfamonomethoxine and ciprofloxacin entering a plant-soil system. Environ Pollut 212:440–448

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Li X, Zhang X, Wang J, Gao M (2015) Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog EcoPlatesâ„¢. Eur J Soil Biol 68:69–76

    Article  CAS  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunsford RD (1998) Streptococcal transformation: essential features and applications of a natural gene exchange system. Plasmid 39:10–20

    Article  CAS  PubMed  Google Scholar 

  • Lv G, Pearce CW, Gleason A et al (2013) Influence of montmorilonite on antimicrobial activity of tetracycline (TC) and ciprofloxacin (CIP). J Asian Earth Sci 77:281–286

    Article  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157(11):2893–2902

    Article  CAS  PubMed  Google Scholar 

  • Mashkoori B (2014) The study of number of enteric bacteria and their antibiotic resistance in industrial and traditional dairy cow manures in Hamedan. MSc thesis, Bu-Ali Sina University, Hamedan, Iran (in Persian)

    Google Scholar 

  • McKinney CW, Loftin KA, Meyer MT et al (2010) tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence. Environ Sci Technol 44:6102–6109

    Article  CAS  PubMed  Google Scholar 

  • Molaei A, Lakzian A, Datta R et al (2017a) Impact of chlortetracycline and sulfapyridine antibiotics on soil enzyme activities. Int Agrophys 31:209–505

    Article  CAS  Google Scholar 

  • Molaei A, Lakzian A, Gh H et al (2017b) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS One 12(7):e0180663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen KM, van Weerelt MD, Berg TN et al (1997) Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl Environ Microbiol 63:1945–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  • Obst U, Schwartz T, Volkmann H (2006) Antibiotic resistant pathogenic bacteria and their resistance genes in bacterial biofilms. J Artif Organs 29:387–394

    Article  CAS  Google Scholar 

  • Ohlsen K, Ziebuhr W, Koller KP, Hell W, Wichelhaus T, Hacker J (1998) Effects of subinhibitory concentrations of antibiotics on alpha-toxin (HLA) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother 42:2817–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peak N, Knapp CW, Yang RK et al (2007) Abundance of six tetracycline resistance genes in wastewater lagoons at cattle feedlots with different antibiotic use strategies. Environ Microbiol 9:143–151

    Article  CAS  PubMed  Google Scholar 

  • Poole RK, Gadd GM (1989) Metal-microbe interactions. Published for the Society for General Microbiology/Published for the Society for General Microbiology by IRL Press. Oxford/New York

    Google Scholar 

  • Punitha BC, Hanumantharaju TH, Jayprakash R, Shilpashree VM (2012) Acetamiprid impacton urease and phosphatase activity in selected soils of southern Karnataka. Intl J Basic Appl Chem Sci 2:1–6

    Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Rashtbari M (2019) Effect of various agricultural antibiotics and biochar and Nano-zeolite amendments on soil microbial population, biodiversity and biological interactions of chickpea (Cicer arietinum L.). PhD thesis in soil biology and biotechnology, Bu Ali Sina University, Hamadan, Iran (unpublished data)

    Google Scholar 

  • Ruiz N, Montero T, Hernandez-Borrell J et al (2003) The role of Serratia marcescens porins in antibiotic resistance. Microb Drug Resist 9:257–264

    Article  CAS  PubMed  Google Scholar 

  • Safari Sinegani AA, Younessi N (2017) Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. JGAR 10:247–255

    Google Scholar 

  • Salyers AA, Ama’bile-Cuevas CF (1997) Why are antibiotic resistance genes so resistant to elimination? Antimicrob Agents Chemother 41:2321–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauss K, Focks A, Heuer H et al (2009) Analysis, fate and effects of antibiotic sulfadiazine in soil ecosystems. Trends Anal Chem 28:612–618

    Article  CAS  Google Scholar 

  • Schwaiger K, Harms K, Ho¨ lzel CS et al (2009) Tetracycline in liquid manure selects for co-occurrence of the resistance genes tet(M) and tet(L) in Enterococcus faecalis. Vet Microbiol 139:386–392

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava N, Majumder C (2008) Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Hazard Mater 151:1–8

    Article  CAS  PubMed  Google Scholar 

  • Telesinski A, Platkowski M, Cybulska K, Telesinska N, Wrobel J, Pawlowska B (2018) Response of soil enzymes to two antibiotics: polymyxin B and penicillin G. Fresenius Environ Bull 27(5A):3837–3845

    CAS  Google Scholar 

  • Ter Laak TL, Gebbink WA (2006) Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environ Toxicol Chem 25:933–941

    Article  PubMed  Google Scholar 

  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3(9):711–721

    Article  CAS  PubMed  Google Scholar 

  • Thompson CL, Wang B, Holmes AJ (2008) The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J 2:739–748

    Article  CAS  PubMed  Google Scholar 

  • Topp E, Chapman R, Devers-Lamrani M et al (2013) Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading sp. J Environ Qual 42:173–178

    Article  CAS  PubMed  Google Scholar 

  • van Overbeek LS, Wellington EM, Egan S et al (2002) Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol Ecol 42:277–288

    Article  PubMed  Google Scholar 

  • Verlicchi P, Galletti A, Masotti L (2010) Management of hospital wastewaters: the case of the effluent of a large hospital situated in a small town. Water Sci Technol 61:2507–2519

    Article  CAS  PubMed  Google Scholar 

  • Wegst-Uhrich SR, Navarro DAG, Zimmerman L et al (2014) Assessing antibiotic sorption in soil: a literature review and new case studies on sulfonamides and macrolides. Chem Cent J 8(5):1–12

    Google Scholar 

  • Wei X, Wu SC, Nie XP, Yediler A, Wong MH (2009) The effects of residual tetracycline on soil enzymatic activities and plant growth. J Environ Science Health B 44:461–471

    Article  CAS  Google Scholar 

  • Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemother 49:585–586

    Article  CAS  PubMed  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186

    Article  CAS  PubMed  Google Scholar 

  • Younessi N (2017) Evaluation of microbial tolerance to some heavy metals and antibiotics in metal-contaminated soils and water resources in Hamadan province. PhD thesis, Bu-Ali Sina University, Hamedan, Iran (in Persian)

    Google Scholar 

  • Younessi N, Safari Sinegani AA, Khodakaramian GH (2017) Detection Beta-lactamase gene in the culturable bacteria isolated from agricultural, pasture and mining soils around mines in Hamedan, Iran. Biol J Microorg 6(21):36–48. In Persian with English Summary

    Google Scholar 

  • Younessi N, Safari Sinegani AA, Khodakaramian G (2019) Detection of antibiotic resistance genes in culturable bacteria isolated from soils around mines in Hamedan. Iran Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-02178-2. (online published)

    Article  CAS  Google Scholar 

  • Zeaiter Z, Mpelli F, Crotti E et al (2018) Methods for the genetic manipulation of marine bacteria. Electron J Biotechn 33:17–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali-Akbar Safari-Sinegani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Safari-Sinegani, AA., Rashtbari, M., Younessi, N., Mashkoori, B. (2019). Antibiotics and Microbial Antibiotic Resistance in Soil. In: Mandal, S., Paul, D. (eds) Bacterial Adaptation to Co-resistance. Springer, Singapore. https://doi.org/10.1007/978-981-13-8503-2_11

Download citation

Publish with us

Policies and ethics