Skip to main content

Plant Oil Biodiesel: Technologies for Commercial Production, Present Status and Future Prospects

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

Emerging environmental impacts and related health issues, the continuous hike in price of vehicle fuels in sync with the depletion of fossil fuels have urged considerable research to move on alternative fuel sources and there comes the word “Biofuel”. Biofuel is gaining importance and has been a major subject of research for scientists worldwide. Attention has been given to biofuels in various countries because of its positive impacts on environment and in response healthy manpower. One of the most important and concerned topic of biofuel is biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovic, H., & Klofutar, C. (1998). The temperature dependence of dynamic viscosity for some vegetable oils. Acta Chimica Slovenica, 45(1), 69–77.

    CAS  Google Scholar 

  • Alonso, J. S. J., Sastre, J. L., Romero-Avila, C., & Lopez, E. (2008). A note on the combustion of blends of diesel and soya, sunflower and rapeseed vegetable oils in a light boiler. Biomass and Bioenergy, 32(9), 880–886.

    Article  Google Scholar 

  • Banković-Ilić, I. B., Stamenković, O. S., & Veljković, V. B. (2012). Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16(6), 3621–3647.

    Article  Google Scholar 

  • Bettis, B., Peterson, C., Auld, D., Driscoll, D., & Peterson, E. (1982). Fuel characteristics of vegetable oil from oilseed crops in the Pacific northwest 1. Agronomy Journal, 74(2), 335–339.

    Article  CAS  Google Scholar 

  • Campanelli, P., Banchero, M., & Manna, L. (2010). Synthesis of biodiesel from edible, non-edible and waste cooking oils via supercritical methyl acetate transesterification. Fuel, 89(12), 3675–3682.

    Article  CAS  Google Scholar 

  • De Oliveira, D., Di Luccio, M., Faccio, C., Dalla Rosa, C., Bender, J. P., Lipke, N., Menoncin, S., Amroginski, C., & De Oliveira, J. V. (2004). Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Proceedings of the twenty-fifth symposium on biotechnology for fuels and chemicals held May 4–7, 2003, in Breckenridge, CO, Springer.

    Google Scholar 

  • Demirbaş, A. (1998). Fuel properties and calculation of higher heating values of vegetable oils. Fuel, 77(9–10), 1117–1120.

    Article  Google Scholar 

  • Demirbas, A. (2008). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Conversion and Management, 49(1), 125–130.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2009). Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50(1), 14–34.

    Article  CAS  Google Scholar 

  • Harrington, K. J., & D’Arcy-Evans, C. (1985). Transesterification in situ of sunflower seed oil. Industrial & Engineering Chemistry Product Research and Development, 24(2), 314–318.

    Article  CAS  Google Scholar 

  • Kaya, C., Hamamci, C., Baysal, A., Akba, O., Erdogan, S., & Saydut, A. (2009). Methyl ester of peanut (Arachis hypogea L.) seed oil as a potential feedstock for biodiesel production. Renewable Energy, 34(5), 1257–1260.

    Article  CAS  Google Scholar 

  • Knothe, G., & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84(9), 1059–1065.

    Article  CAS  Google Scholar 

  • Koh, M. Y., & Ghazi, T. I. M. (2011). A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews, 15(5), 2240–2251.

    Article  CAS  Google Scholar 

  • Leung, D., & Guo, Y. (2006). Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology, 87(10), 883–890.

    Article  CAS  Google Scholar 

  • Meneghetti, S. M. P., Meneghetti, M. R., Wolf, C. R., Silva, E. C., Lima, G. E., de Lira Silva, L., Serra, T. M., Cauduro, F., & de Oliveira, L. G. (2006). Biodiesel from castor oil: A comparison of ethanolysis versus methanolysis. Energy & Fuels, 20(5), 2262–2265.

    Article  Google Scholar 

  • Sahoo, P., & Das, L. (2009). Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel, 88(9), 1588–1594.

    Article  CAS  Google Scholar 

  • Sanjay, B. (2013). Transesterification with heterogeneous catalyst in production of biodiesel: A review. Journal of Chemical and Pharmaceutical Research, 5, 1): 1–1): 7.

    Google Scholar 

  • Schuchardt, U., Sercheli, R., & Vargas, R. M. (1998). Transesterification of vegetable oils: A review. Journal of the Brazilian Chemical Society, 9(3), 199–210.

    Article  CAS  Google Scholar 

  • Shah, S., Sharma, S., & Gupta, M. (2004). Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy & Fuels, 18(1), 154–159.

    Article  CAS  Google Scholar 

  • Sharma, Y., & Singh, B. (2010). An ideal feedstock, kusum (Schleichera triguga) for preparation of biodiesel: Optimization of parameters. Fuel, 89(7), 1470–1474.

    Article  CAS  Google Scholar 

  • Toscano, G., & Maldini, E. (2007). Analysis of the physical and chemical characteristics of vegetable oils as fuel. Journal of Agricultural Engineering, 38(3), 39–47.

    Article  Google Scholar 

  • Valdés, A. F., & Garcia, A. B. (2006). A study of the evolution of the physicochemical and structural characteristics of olive and sunflower oils after heating at frying temperatures. Food Chemistry, 98(2), 214–219.

    Article  Google Scholar 

  • Veljković, V. B., Banković-Ilić, I. B., & Stamenković, O. S. (2015). Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 49, 500–516.

    Article  Google Scholar 

  • Zubr, J. (1997). Oil-seed crop: Camelina sativa. Industrial Crops and Products, 6(2), 113–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, A.N., Talan, A., Gaurav, K. (2019). Plant Oil Biodiesel: Technologies for Commercial Production, Present Status and Future Prospects. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_9

Download citation

Publish with us

Policies and ethics