Skip to main content

ROS Mediated Plant Defense Against Abiotic Stresses

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

Changes in the natural environment may cause stress to living organisms. This phenomenon has been widely observed in plants during abiotic stresses which include changes in temperature, pH of the soil, salinity and water content. Such stresses usually lead to the production of reactive oxygen species (ROS) in plant cells. Although ROS are generally produced inside plant cells as a by-product of different metabolic pathways including electron transport in the process of respiration, photosynthesis and several other chemical reactions, excessive production of these free radicals can lead to damage of the cell components due to oxidative stress. Other means of ROS production include external stimuli including biotic and abiotic stresses or cell lignification processes which lead to the enzymatic production of ROS. Various forms of ROS may include hydrogen peroxide (H2O2), hydroxyl radical (HO·), singular oxygen (1O2), and superoxide ion (O2·). These highly reactive free radicals are produced in different cellular compartments such as mitochondria, chloroplasts, peroxisome and the apoplast. Key roles for various reactive oxygen molecules include involvement in plant growth and development, programmed cell death, acclimation of stresses such as drought, salt, heat, cold, light and high frequency electromagnetic fields. In addition to involvement in stress acclimation and mitigation ROS serve as signaling molecules during biotic and abiotic stress responses. ROS are also involved in cross talk between different phytohormones, calcium signaling, antioxidant proteins, protein kinases and phosphatases and map kinase signaling network. Furthermore, ROS induce transcriptional changes show involvement of these molecules in regulating a plethora of biological processes at the transcript level. Therefore, ROS stand out as a good candidate for future research through classical as well as advanced bio-technological methods for a better understanding of plant biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abogadallah, G. M. (2010). Antioxidative defense under salt stress. Plant Signaling & Behavior, 5(4), 369–374.

    Article  CAS  Google Scholar 

  • Adams, W. W., Muller, O., Cohu, C. M., et al. (2013). May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynthesis Research, 117(1–3), 31–44.

    Article  CAS  PubMed  Google Scholar 

  • Ahanger, M. A., Akram, N. A., Ashraf, M., et al. (2017). Plant responses to environmental stresses—From gene to biotechnology. AoB Plants, 9(4), plx025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlfors, R., Lång, S., Overmyer, K., et al. (2004). Arabidopsis radical-induced cell death1 belongs to the WWE protein–protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell, 16(7), 1925–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand, A., Nagarajan, S., Verma, A., et al. (2012). Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry and Biophysics, 49, 63–70.

    CAS  PubMed  Google Scholar 

  • Anjum, N. A., Sharma, P., Gill, S. S., et al. (2016). Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environmental Science and Pollution Research International, 23(19), 19002–19029. https://doi.org/10.1007/s11356-016-7309-6.

    Article  CAS  PubMed  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701.

    Article  CAS  PubMed  Google Scholar 

  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai, S., & Yoshioka, H. (2008). The role of radical burst via MAPK signaling in plant immunity. Plant Signaling & Behavior, 3(11), 920–922.

    Article  Google Scholar 

  • Asai, T., Tena, G., Plotnikova, J., et al. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415(6875), 977–983.

    Article  CAS  PubMed  Google Scholar 

  • Asai, S., Ohta, K., & Yoshioka, H. (2008). MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell, 20(5), 1390–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Balmori, A. (2009). Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology, 16(2), 191–199.

    Article  PubMed  Google Scholar 

  • Bauwe, H., Hagemann, M., & Fernie, A. R. (2010). Photorespiration: Players, partners and origin. Trends in Plant Science, 15(6), 330–336.

    Article  CAS  PubMed  Google Scholar 

  • Bavita, A., Shashi, B., & Navtej, S. (2012). Nitric oxide alleviates oxidative damage induced by high temperature stress in wheat. Indian Journal of Experimental Biology, 50, 372–378.

    CAS  PubMed  Google Scholar 

  • Baxter, A., Mittler, R., & Suzuki, N. (2013). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240.

    Article  CAS  PubMed  Google Scholar 

  • Beaubois, E., Girard, S., Lallechere, S., et al. (2007). Intercellular communication in plants: Evidence for two rapidly transmitted systemic signals generated in response to electromagnetic field stimulation in tomato. Plant, Cell & Environment, 30(7), 834–844.

    Article  CAS  Google Scholar 

  • Berry, E. A., Guergova-Kuras, M., L-s, H., et al. (2000). Structure and function of cytochrome bc complexes. Annual Review of Biochemistry, 69(1), 1005–1075.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transducation in plants. Current Science, 89, 1113–1121.

    CAS  Google Scholar 

  • Blokhina, O., & Fagerstedt, K. V. (2010). Reactive oxygen species and nitric oxide in plant mitochondria: Origin and redundant regulatory systems. Physiologia Plantarum, 138(4), 447–462.

    Article  CAS  PubMed  Google Scholar 

  • Bozhkov, P. V., & Lam, E. (2011). Green death: Revealing programmed cell death in plants. Cell Death and Differentiation, 18(8), 1239–1240. https://doi.org/10.1038/cdd.2011.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosché, M., Blomster, T., Salojärvi, J., et al. (2014). Transcriptomics and functional genomics of ROS-induced cell death regulation by radical-induced cell death1. PLoS Genetics, 10(2), e1004112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, S., Jiang, G., Ye, N., et al. (2015). A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS One, 10(2), e0116646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmak, T., Cakmak, Z. E., Dumlupinar, R., et al. (2012). Analysis of apoplastic and symplastic antioxidant system in shallot leaves: Impacts of weak static electric and magnetic field. Journal of Plant Physiology, 169(11), 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  • Carmody, M., Crisp, P. A., d’Alessandro, S., et al. (2016). Uncoupling high light responses from singlet oxygen retrograde signaling and spatial-temporal systemic acquired acclimation. Plant Physiology, 171(3), 1734–1749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho, L., Coito, J., Goncalves, E., et al. (2016). Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biology, 18(S1), 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Cecchini, G. (2003). Function and structure of complex II of the respiratory chain. Annual Review of Biochemistry, 72(1), 77–109.

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi, A. K., Patel, M. K., Mishra, A., et al. (2014). The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS One, 9(10), e111379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y.-p., Li, R., & He, J.-M. (2011). Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology, 20(4), 760–769.

    Article  CAS  PubMed  Google Scholar 

  • Choudhury, S., Panda, P., Sahoo, L., et al. (2013). Reactive oxygen species signaling in plants under abiotic stress. Plant Signaling & Behavior, 8(4), e23681.

    Article  CAS  Google Scholar 

  • Choudhury, F. K., Rivero, R. M., Blumwald, E., et al. (2017). Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90(5), 856–867. https://doi.org/10.1111/tpj.13299.

    Article  CAS  PubMed  Google Scholar 

  • Crofts, A. R. (2004). The cytochrome bc 1 complex: Function in the context of structure. Annual Review of Physiology, 66, 689–733.

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling & Behavior, 3(3), 156–165.

    Article  Google Scholar 

  • Danon, A., Miersch, O., Felix, G., et al. (2005). Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. The Plant Journal, 41(1), 68–80. https://doi.org/10.1111/j.1365-313X.2004.02276.x.

    Article  CAS  PubMed  Google Scholar 

  • Das, P., Nutan, K. K., Singla-Pareek, S. L., et al. (2015). Oxidative environment and redox homeostasis in plants: Dissecting out significant contribution of major cellular organelles. Frontiers in Environmental Science, 2, 70.

    Article  Google Scholar 

  • Dat, J. F., Pellinen, R., Beeckman, T., et al. (2003). Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. The Plant Journal, 33(4), 621–632. https://doi.org/10.1046/j.1365-313X.2003.01655.x.

    Article  CAS  PubMed  Google Scholar 

  • Daudi, A., Cheng, Z., O’Brien, J. A., et al. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. Plant Cell, 24(1), 275–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109, 212–228.

    Article  CAS  Google Scholar 

  • Dietz, K.-J., Mittler, R., & Noctor, G. (2016). Recent progress in understanding the role of reactive oxygen species in plant cell signaling. Plant Physiology, 171(3), 1535–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinakar, C., Abhaypratap, V., Yearla, S. R., et al. (2010). Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta, 231(2), 461.

    Article  CAS  PubMed  Google Scholar 

  • Ding, H., Zhang, A., Wang, J., et al. (2009). Identity of an ABA-activated 46 kDa mitogen-activated protein kinase from Zea mays leaves: Partial purification, identification and characterization. Planta, 230(2), 239–251.

    Article  CAS  PubMed  Google Scholar 

  • Divi, U. K., & Krishna, P. (2009). Brassinosteroid: A biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology, 26(3–4), 131–136.

    Article  CAS  PubMed  Google Scholar 

  • Du, Y. Y., Wang, P. C., & Chen, J. (2008). Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. Journal of Integrative Plant Biology, 50(10), 1318–1326. https://doi.org/10.1111/j.1744-7909.2008.00741.x.

    Article  CAS  PubMed  Google Scholar 

  • Du, H., Wang, N., Cui, F., et al. (2010). Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiology, 154(3), 1304–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edreva, A. M., Pouneva, I. D., & Gesheva, E. Z. (2015). UV-B radiation induces biphasic burst of hydrogen peroxide in mesophyll Chlorella vulgaris. Russian Journal of Plant Physiology, 62(2), 219–223. https://doi.org/10.1134/S1021443715010069.

    Article  CAS  Google Scholar 

  • Fischer, B. B., Hideg, E., & Krieger-Liszkay, A. (2013). Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxidants Redox Signaling, 18(16), 2145–2162.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2013). Redox signaling in plants. Antioxidants & Redox Signaling, 18(16), 2087–2090. https://doi.org/10.1089/ars.2013.5278.

    Article  CAS  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2016). Stress-triggered redox signalling: what's in pROSpect? Plant, Cell & Environment, 39(5), 951–964.

    Article  CAS  Google Scholar 

  • Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155(1), 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H., Bloom, A. J., Queval, G., et al. (2009). Photorespiratory metabolism: Genes, mutants, energetics, and redox signaling. Annual Review of Plant Biology, 60, 455–484.

    Article  CAS  PubMed  Google Scholar 

  • Gapper, C., & Dolan, L. (2006). Control of plant development by reactive oxygen species. Plant Physiology, 141(2), 341–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill, S. S., Anjum, N. A., Gill, R., et al. (2015). Superoxide dismutase--mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research International, 22(14), 10375–10394. https://doi.org/10.1007/s11356-015-4532-5.

    Article  CAS  PubMed  Google Scholar 

  • Gilroy, S., Suzuki, N., Miller, G., et al. (2014). A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling. Trends in Plant Science, 19(10), 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Gilroy, S., Białasek, M., Suzuki, N., et al. (2016). ROS, calcium, and electric signals: Key mediators of rapid systemic signaling in plants. Plant Physiology, 171(3), 1606–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack, D., Li, C., Mohan, H., et al. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5, 151. https://doi.org/10.3389/fpls.2014.00151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan, Q., Wang, Z., Wang, X., et al. (2015). A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H 2 O 2 accumulation. Journal of Plant Physiology, 175, 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Haghighat, N., Abdolmaleki, P., Ghanati, F., et al. (2014). Modification of catalase and MAPK in Vicia faba cultivated in soil with high natural radioactivity and treated with a static magnetic field. Journal of Plant Physiology, 171(5), 99–103.

    Article  CAS  PubMed  Google Scholar 

  • Halgamuge, M. N., Yak, S. K., & Eberhardt, J. L. (2015). Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station. Bioelectromagnetics, 36(2), 87–95.

    Article  PubMed  Google Scholar 

  • Halliwell, B. (2006). Oxidative stress and neurodegeneration: Where are we now? Journal of Neurochemistry, 97(6), 1634–1658.

    Article  CAS  PubMed  Google Scholar 

  • Hamel, L.-P., Nicole, M.-C., Sritubtim, S., et al. (2006). Ancient signals: Comparative genomics of plant MAPK and MAPKK gene families. Trends in Plant Science, 11(4), 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., et al. (2012). Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In B. Venkateswarlu, A. K. Shanker, C. Shanker, & M. Maheswari (Eds.), Crop stress and its management: Perspectives and strategies (pp. 261–315). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2220-0_8.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., et al. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi, K., Takasawa, R., Yoshimori, A., et al. (2005). Identification of a novel gene family, paralogs of inhibitor of apoptosis proteins present in plants, fungi, and animals. Apoptosis, 10(3), 471–480. https://doi.org/10.1007/s10495-005-1876-1.

    Article  CAS  PubMed  Google Scholar 

  • Hirst, J. (2005). Energy transduction by respiratory complex I–an evaluation of current knowledge. Biochemical Society Transactions, 33, 525–529. Portland Press Limited.

    Article  CAS  PubMed  Google Scholar 

  • Horsefield, R., Iwata, S., & Byrne, B. (2004). Complex II from a structural perspective. Current Protein & Peptide Science, 5(2), 107–118.

    Article  CAS  Google Scholar 

  • Hu, H., & Xiong, L. (2014). Genetic engineering and breeding of drought-resistant crops. Annual Review of Plant Biology, 65, 715–741.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Jiang, M., Zhang, J., et al. (2007). Calcium–calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. The New Phytologist, 173(1), 27–38.

    Article  CAS  PubMed  Google Scholar 

  • Hu, L. F., Liang, W. Q., Yin, C. S., et al. (2011). Rice MADS3 regulates ROS homeostasis during late anther development. Plant Cell, 23(2), 515–533. https://doi.org/10.1105/tpc.110.074369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, B., & Xu, C. (2008). Identification and characterization of proteins associated with plant tolerance to heat stress. Journal of Integrative Plant Biology, 50(10), 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  • Hurkman, W. J., Vensel, W. H., Tanaka, C. K., et al. (2009). Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain. Journal of Cereal Science, 49(1), 12–23.

    Article  CAS  Google Scholar 

  • Jabs, T. (1999). Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology, 57(3), 231–245. https://doi.org/10.1016/S0006-2952(98)00227-5.

    Article  CAS  PubMed  Google Scholar 

  • Jagannathan, B., & Golbeck, J. (2009). Photosynthesis:Microbial. https://doi.org/10.1016/b978-012373944-5.00352-7.

  • Jalmi, S. K., & Sinha, A. K. (2015). ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Frontiers in Plant Science, 6, 769.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaspers, P., & Kangasjärvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum, 138(4), 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Jaspers, P., Blomster, T., Brosche, M., et al. (2009). Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. The Plant Journal, 60(2), 268–279.

    Article  PubMed  Google Scholar 

  • Jaspers, P., Overmyer, K., Wrzaczek, M., et al. (2010). The RST and PARP-like domain containing SRO protein family: Analysis of protein structure, function and conservation in land plants. BMC Genomics, 11(1), 170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, M., & Zhang, J. (2002a). Involvement of plasma-membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 215(6), 1022–1030.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, M., & Zhang, J. (2002b). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 53(379), 2401–2410.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z., Song, X. F., Zhou, Z. Q., et al. (2010). Aerenchyma formation: Programmed cell death in adventitious roots of winter wheat (Triticum aestivum) under waterlogging. Functional Plant Biology, 37(8), 748–755. https://doi.org/10.1071/FP09252.

    Article  Google Scholar 

  • Jin, R., Wang, Y., Liu, R., et al. (2016). Physiological and metabolic changes of purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses. Frontiers in Plant Science, 6, 1123.

    PubMed  PubMed Central  Google Scholar 

  • Joo, J. H., Wang, S. Y., Chen, J. G., et al. (2005). Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the arabidopsis oxidative stress response to ozone. Plant Cell, 17(3), 957–970. https://doi.org/10.1105/tpc.104.029603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadota, Y., Sklenar, J., Derbyshire, P., et al. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell, 54(1), 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Kangasjärvi, S., Neukermans, J., Li, S., et al. (2012). Photosynthesis, photorespiration, and light signalling in defence responses. Journal of Experimental Botany, 63(4), 1619–1636.

    Article  CAS  PubMed  Google Scholar 

  • Karan, R., & Subudhi, P. K. (2012). A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis. BMC Plant Biology, 12, 187. https://doi.org/10.1186/1471-2229-12-187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kärkönen, A., & Kuchitsu, K. (2015). Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry, 112, 22–32.

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian, T., Moon, J.-C., Kim, C., et al. (2011). Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5(6), 709.

    CAS  Google Scholar 

  • Katiyar-Agarwal, S., Zhu, J., Kim, K., et al. (2006). The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences, 103(49), 18816–18821.

    Article  CAS  Google Scholar 

  • Kazzaz, J. A., Xu, J., Palaia, T. A., et al. (1996). Cellular oxygen toxicity – Oxidant injury without apoptosis. The Journal of Biological Chemistry, 271(25), 15182–15186.

    Article  CAS  PubMed  Google Scholar 

  • Kleine, T., & Leister, D. (2016). Retrograde signaling: Organelles go networking. Biochimica et Biophysica Acta, 1857(8), 1313–1325. https://doi.org/10.1016/j.bbabio.2016.03.017.

    Article  CAS  PubMed  Google Scholar 

  • Koffler, B. E., Luschin-Ebengreuth, N., Stabentheiner, E., et al. (2014). Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Science, 227, 133–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koussevitzky, S., Suzuki, N., Huntington, S., et al. (2008). Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. The Journal of Biological Chemistry, 283, 34197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovtun, Y., Chiu, W.-L., Tena, G., et al. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences, 97(6), 2940–2945.

    Article  CAS  Google Scholar 

  • Krieger-Liszkay, A., Fufezan, C., & Trebst, A. (2008). Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research, 98(1–3), 551–564.

    Article  CAS  PubMed  Google Scholar 

  • Kurusu, T., & Kuchitsu, K. (2017). Autophagy, programmed cell death and reactive oxygen species in sexual reproduction in plants. Journal of Plant Research, 130(3), 491–499. https://doi.org/10.1007/s10265-017-0934-4.

    Article  CAS  PubMed  Google Scholar 

  • Kurusu, T., Hamada, J., Nokajima, H., et al. (2010). Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiology, 153(2), 678–692. https://doi.org/10.1104/pp.109.151852.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurusu, T., Koyano, T., Hanamata, S., et al. (2014). OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy, 10(5), 878–888. https://doi.org/10.4161/auto.28279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langebartels, C., Wohlgemuth, H., Kschieschan, S., et al. (2002). Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry, 40(6–8), 567–575. https://doi.org/10.1016/S0981-9428(02)01416-X. Pii S0981-9428(02)01416-X.

    Article  CAS  Google Scholar 

  • Lee, K. P., Kim, C., Landgraf, F., et al. (2007a). EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10270–10275. https://doi.org/10.1073/pnas.0702061104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. P., Kim, C., Landgraf, F., et al. (2007b). executer1-and executer2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 104(24), 10270–10275.

    Article  CAS  Google Scholar 

  • León, J., Rojo, E., & Sánchez-Serrano, J. J. (2001). Wound signalling in plants. Journal of Experimental Botany, 52(354), 1–9.

    Article  PubMed  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., et al. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79(4), 583–593.

    Article  CAS  PubMed  Google Scholar 

  • Li, C.-H., Wang, G., Zhao, J.-L., et al. (2014). The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell, 26(6), 2538–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, F., Ding, H., Wang, J., et al. (2009). Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. Journal of Experimental Botany, 60(11), 3221–3238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liszkay, A., Kenk, B., & Schopfer, P. (2003). Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta, 217(4), 658–667.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Ren, D., Pike, S., et al. (2007). Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. The Plant Journal, 51(6), 941–954. https://doi.org/10.1111/j.1365-313X.2007.03191.x.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S., Liu, S., Wang, M., et al. (2014). A wheat similar to rcd-one gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity. Plant Cell, 26(1), 164–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luis, A., Sandalio, L. M., & Corpas, F. J. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology, 141(2), 330–335.

    Article  CAS  Google Scholar 

  • Lüthje, S., Möller, B., Perrineau, F. C., et al. (2013). Plasma membrane electron pathways and oxidative stress. Antioxidants & Redox Signaling, 18(16), 2163–2183.

    Article  CAS  Google Scholar 

  • Ma, F., Lu, R., Liu, H., et al. (2012). Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. Journal of Experimental Botany, 63(13), 4835–4847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino, D., Dunand, C., Puppo, A., et al. (2012). A burst of plant NADPH oxidases. Trends in Plant Science, 17(1), 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, V., Mestre, T. C., Rubio, F., et al. (2016). Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Frontiers in Plant Science, 7, 838.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateo, A., Muhlenbock, P., Rusterucci, C., et al. (2004). Lesion simulating disease 1 – Is required for acclimation to conditions that promote excess excitation energy. Plant Physiology, 136(1), 2818–2830. https://doi.org/10.1104/pp.104.043646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mckersie, B. D., Bowley, S. R., Harjanto, E., et al. (1996). Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiology, 111(4), 1177–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignolet-Spruyt, L., Xu, E., Idänheimo, N., et al. (2016). Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. Journal of Experimental Botany, 67(13), 3831–3844.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G., Schlauch, K., Tam, R., et al. (2009). The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2(84), ra45–ra45.

    Article  PubMed  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., & Rizhsky, L. (2000). Transgene-induced lesion mimic. Plant Molecular Biology, 44(3), 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., et al. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490–498. https://doi.org/10.1016/j.tplants.2004.08.009.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Kim, Y., Song, L., et al. (2006). Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters, 580(28–29), 6537–6542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler, R., Vanderauwera, S., Suzuki, N., et al. (2011). ROS signaling: The new wave? Trends in Plant Science, 16(6), 300–309.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed, A. R., & Tarpley, L. (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European Journal of Agronomy, 33(2), 117–123.

    Article  Google Scholar 

  • Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–481.

    Article  CAS  PubMed  Google Scholar 

  • Moon, H., Lee, B., Choi, G., et al. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences, 100(1), 358–363.

    Article  CAS  Google Scholar 

  • Munné-Bosch, S., Queval, G., & Foyer, C. H. (2013). The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiology, 161(1), 5–19.

    Article  CAS  PubMed  Google Scholar 

  • Nakagami, H., Pitzschke, A., & Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signalling. Trends in Plant Science, 10(7), 339–346. https://doi.org/10.1016/j.tplants.2005.05.009.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., et al. (2002). Drought and oxidative load in the leaves of C3 plants: A predominant role for photorespiration? Annals of Botany, 89(7), 841–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor, G., Reichheld, J. P., & Foyer, C. H. (2017). ROS-related redox regulation and signaling in plants. Seminars in Cell & Developmental Biology, 80, 3–12. https://doi.org/10.1016/j.semcdb.2017.07.013.

    Article  CAS  Google Scholar 

  • Nxele, X., Klein, A., & Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, 261–266. https://doi.org/10.1016/j.sajb.2016.11.003.

    Article  CAS  Google Scholar 

  • O’Brien, J. A., Daudi, A., Butt, V. S., et al. (2012). Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta, 236(3), 765–779.

    Article  CAS  PubMed  Google Scholar 

  • Oberschall, A., Deák, M., Török, K., et al. (2000). A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. The Plant Journal, 24(4), 437–446.

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara, Y., Kaya, H., Hiraoka, G., et al. (2008). Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. The Journal of Biological Chemistry, 283(14), 8885–8892.

    Article  CAS  PubMed  Google Scholar 

  • Oksala, N. K., Ekmekci, F. G., Ozsoy, E., et al. (2014). Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biology, 3, 25–28. https://doi.org/10.1016/j.redox.2014.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Op Den Camp, R. G. L., Przybyla, D., Ochsenbein, C., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in arabidopsis. Plant Cell, 15(10), 2320–2332. https://doi.org/10.1105/tpc.014662.

    Article  CAS  Google Scholar 

  • Overmyer, K., Brosche, M., Pellinen, R., et al. (2005). Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiology, 137(3), 1092–1104. https://doi.org/10.1104/pp.104.055681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, J., Zhang, M., Kong, X., et al. (2012). ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses. Planta, 235(4), 661–676.

    Article  CAS  PubMed  Google Scholar 

  • Passardi, F., Penel, C., & Dunand, C. (2004). Performing the paradoxical: How plant peroxidases modify the cell wall. Trends in Plant Science, 9(11), 534–540.

    Article  CAS  PubMed  Google Scholar 

  • Pavet, V., Olmos, E., Kiddle, G., et al. (2005). Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiology, 139(3), 1291–1303. https://doi.org/10.1104/pp.105.067686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennell, R. I., & Lamb, C. (1997). Programmed cell death in plants. Plant Cell, 9(7), 1157–1168. https://doi.org/10.1105/Tpc.9.7.1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Clemente, R. M., Vives, V., Zandalinas, S. I., et al. (2013). Biotechnological approaches to study plant responses to stress. BioMed Research International, 2013, 654120.

    Article  CAS  PubMed  Google Scholar 

  • Petrov, V., Hille, J., Mueller-Roeber, B., et al. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitzschke, A., & Hirt, H. (2006). Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiology, 141(2), 351–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitzschke, A., Djamei, A., Bitton, F., et al. (2009). A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling. Molecular Plant, 2(1), 120–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polle, A. (2001). Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant physiology, 126(1), 445–462. https://doi.org/10.1104/Pp.126.1.445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polyn, S., Willems, A., & De Veylder, L. (2015). Cell cycle entry, maintenance, and exit during plant development. Current Opinion in Plant Biology, 23, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Potters, G., Pasternak, T. P., Guisez, Y., et al. (2009). Different stresses, similar morphogenic responses: Integrating a plethora of pathways. Plant, Cell & Environment, 32(2), 158–169.

    Article  Google Scholar 

  • Prashanth, S., Sadhasivam, V., & Parida, A. (2008). Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Research, 17(2), 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Qi, Y., Wang, H., Zou, Y., et al. (2011). Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Letters, 585(1), 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Radic, S., Cvjetko, P., & Malaric, K. et al. (2007). Radio frequency electromagnetic field (900 MHz) induces oxidative damage to DNA and biomembrane in tobacco shoot cells (Nicotiana tabacum). In: Microwave symposium. IEEE/MTT-S international, 2007, IEEE, pp 2213–2216

    Google Scholar 

  • Ren, D. T., Yang, K. Y., Li, G. J., et al. (2006). Activation of Ntf4, a tobacco mitogen-activated protein kinase, during plant defense response and its involvement in hypersensitive response-like cell death. Plant Physiology, 141(4), 1482–1493. https://doi.org/10.1104/pp.106.080697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., et al. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134(4), 1683–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux, D., Vian, A., Girard, S., et al. (2006). Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiologia Plantarum, 128(2), 283–288.

    Article  CAS  Google Scholar 

  • Roux, D., Vian, A., Girard, S., et al. (2008). High frequency (900 MHz) low amplitude (5 V m− 1) electromagnetic field: A genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta, 227(4), 883–891.

    Article  CAS  PubMed  Google Scholar 

  • Sage, R. (2013). Photorespiratory compensation: A driver for biological diversity. Plant Biology, 15(4), 624–638.

    Article  CAS  PubMed  Google Scholar 

  • Sato, Y., Masuta, Y., Saito, K., et al. (2011). Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Reports, 30(3), 399–406.

    Article  CAS  PubMed  Google Scholar 

  • Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462.

    Article  CAS  PubMed  Google Scholar 

  • Shapiguzov, A., Vainonen, J. P., Wrzaczek, M., et al. (2012). ROS-talk–how the apoplast, the chloroplast, and the nucleus get the message through. Frontiers in Plant Science, 3, 292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., et al. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1–26.

    Article  CAS  Google Scholar 

  • Shi, B., Ni, L., Zhang, A., et al. (2012). OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice. Molecular Plant, 5(6), 1359–1374.

    Article  CAS  PubMed  Google Scholar 

  • Sierla, M., Rahikainen, M., Salojärvi, J., et al. (2013). Apoplastic and chloroplastic redox signaling networks in plant stress responses. Antioxidants & Redox Signaling, 18(16), 2220–2239.

    Article  CAS  Google Scholar 

  • Singh, H. P., Sharma, V. P., Batish, D. R., et al. (2012). Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environmental Monitoring and Assessment, 184(4), 1813–1821.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, A. K., Jaggi, M., Raghuram, B., et al. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signaling & Behavior, 6(2), 196–203.

    Article  CAS  Google Scholar 

  • Smékalová, V., Doskočilová, A., Komis, G., et al. (2014). Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnology Advances, 32(1), 2–11.

    Article  CAS  PubMed  Google Scholar 

  • Soliman, W. S., Fujimori, M., Tase, K., et al. (2011). Oxidative stress and physiological damage under prolonged heat stress in C3 grass Lolium perenne. Grassland Science, 57(2), 101–106.

    Article  CAS  Google Scholar 

  • Suzuki, N., Miller, G., Salazar, C., et al. (2013). Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants. Plant Cell, 25(9), 3553–3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, N., Rivero, R. M., Shulaev, V., et al. (2014). Abiotic and biotic stress combinations. The New Phytologist, 203(1), 32–43.

    Article  PubMed  Google Scholar 

  • Suzuki, N., Bassil, E., Hamilton, J. S., et al. (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One, 11(1), e0147625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, W., Wei Meng, Q., Brestic, M., et al. (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology, 168(17), 2063–2071.

    Article  CAS  PubMed  Google Scholar 

  • Tkalec, M., Malarić, K., & Pevalek-Kozlina, B. (2007). Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Science of the Total Environment, 388(1), 78–89.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, M. J., Liu, C.-W., & Yiu, J.-C. (2007). Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiology and Biochemistry, 45(10–11), 822–833.

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara, T., Aoyama, H., Yamashita, E., et al. (1996). The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science, 272(5265), 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  • Uttara, B., Singh, A. V., Zamboni, P., et al. (2009). Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 65–74. https://doi.org/10.2174/157015909787602823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacca, R. A., De Pinto, M. C., Valenti, D., et al. (2004). Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiology, 134(3), 1100–1112. https://doi.org/10.1104/pp.103.035956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Breusegem, F., & Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiology, 141(2), 384–390. https://doi.org/10.1104/pp.106.078295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderauwera, S., Vandenbroucke, K., Inze, A., et al. (2012). AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 109(49), 20113–20118. https://doi.org/10.1073/pnas.1217516109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanlerberghe, G. C. (2013). Alternative oxidase: A mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. International Journal of Molecular Sciences, 14(4), 6805–6847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss, I., Sunil, B., Scheibe, R., et al. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15(4), 713–722.

    Article  CAS  PubMed  Google Scholar 

  • Weber, A., & Bauwe, H. (2013). Photorespiration–a driver for evolutionary innovations and key to better crops. Plant Biology, 15(4), 621–623.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y. J., Xu, S., Han, B., et al. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. The Plant Journal, 66(2), 280–292. https://doi.org/10.1111/j.1365-313X.2011.04488.x.

    Article  CAS  PubMed  Google Scholar 

  • Xing, Y., W-h, C., Jia, W., et al. (2015). Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. Journal of Experimental Botany, 66(19), 5971–5981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav, S. K. (2010). Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, 30(3), 515–527.

    Article  CAS  Google Scholar 

  • Yan, J., Guan, L., Sun, Y., et al. (2015). Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant & Cell Physiology, 56(5), 883–896.

    Article  CAS  Google Scholar 

  • Yang, Z., Wu, Y., Li, Y., et al. (2009). OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Molecular Biology, 70(1–2), 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C.-J., Zhang, C., Lu, Y.-N., et al. (2011). The mechanisms of brassinosteroids' action: From signal transduction to plant development. Molecular Plant, 4(4), 588–600.

    Article  CAS  PubMed  Google Scholar 

  • Yankovskaya, V., Horsefield, R., Törnroth, S., et al. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science, 299(5607), 700–704.

    Article  CAS  PubMed  Google Scholar 

  • Ye, N., Zhu, G., Liu, Y., et al. (2011). ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant & Cell Physiology, 52(4), 689–698.

    Article  CAS  Google Scholar 

  • Yokawa, K., Fasano, R., Kagenishi, T., et al. (2014). Light as stress factor to plant roots–case of root halotropism. Frontiers in Plant Science, 5, 718.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida, M., Muneyuki, E., & Hisabori, T. (2001). ATP synthase—A marvellous rotary engine of the cell. Nature Reviews. Molecular Cell Biology, 2(9), 669.

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa, S., Muramoto, K., Shinzawa-Itoh, K., et al. (2006). Proton pumping mechanism of bovine heart cytochrome c oxidase. Biochimica et Biophysica Acta, 1757(9–10), 1110–1116.

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto, K., Jikumaru, Y., Kamiya, Y., et al. (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent Salicylic Acid Signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 21(9), 2914–2927. https://doi.org/10.1105/tpc.109.068635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You, J., Zong, W., Li, X., et al. (2012). The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. Journal of Experimental Botany, 64(2), 569–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, L. W., Wilen, R. W., & Bonham-Smith, P. C. (2004). High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. Journal of Experimental Botany, 55(396), 485–495.

    Article  CAS  PubMed  Google Scholar 

  • Zare, H., Mohsenzadeh, S., & Moradshahi, A. (2015). Electromagnetic waves from GSM mobile phone simulator and abiotic stress in Zea mays L. Journal of Nutrition & Food Sciences, 11.

    Google Scholar 

  • Zhang, A., Jiang, M., Zhang, J., et al. (2006a). Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiology, 141(2), 475–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Frerman, F. E., & Kim, J.-J. P. (2006b). Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Proceedings of the National Academy of Sciences, 103(44), 16212–16217.

    Article  CAS  Google Scholar 

  • Zhang, Y., Tan, J., Guo, Z., et al. (2009). Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences. Plant, Cell & Environment, 32(5), 509–519.

    Article  CAS  Google Scholar 

  • Zhang, D., Jiang, S., Pan, J., et al. (2014a). The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biology, 16(3), 558–570.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Liu, Y., Wen, F., et al. (2014b). A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. Journal of Experimental Botany, 65(20), 5795–5809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. H., Fu, X. M., Koo, Y. D., et al. (2007). An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Molecular and Cellular Biology, 27(14), 5214–5224. https://doi.org/10.1128/Mcb.01989-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J.-Y., Sae-Seaw, J., & Wang, Z.-Y. (2013). Brassinosteroid signalling. Development, 140(8), 1615–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurbriggen, M. D., Carrillo, N., Tognetti, V. B., et al. (2009). Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. The Plant Journal, 60(6), 962–973. https://doi.org/10.1111/j.1365-313X.2009.04010.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Amir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amir, R., Hussain, S., Noor-ul-Ain, H., Hussain, A., Yun, BW. (2019). ROS Mediated Plant Defense Against Abiotic Stresses. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_21

Download citation

Publish with us

Policies and ethics