Skip to main content

Defense Mechanism and Diverse Actions of Fungal Biological Control Agents Against Plant Biotic Stresses

  • Chapter
  • First Online:
  • 948 Accesses

Abstract

The terms “biological control” or its abbreviation “biocontrol” is an environmentally sound and effective means of mitigating or reducing of pathogen/pests by interference with their ecological status, as by introducing a natural enemy into their environment. The concept of biological control have been used in various fields of research, most notably plant pathology and entomology. In plant pathology, it has been used to describe the use of microbial antagonists to suppress plant diseases. In entomology, the term applies to the use of insects’ predators, or microbial agents to suppress populations of various pest insects. In both fields, the living organism that used to suppresses the pathogen or pest is referred to as the biological control agent (BCA). With regards to plant pathology, the plant host responds to various environmental stimuli, including non-pathogenic and pathogenic, thus induced host resistance, considered outstanding formula of biological control. In this chapter we will discuss the mechanism and mode of actions of different fungal BCA for induction of crop disease resistance and specific advantages of using this control method in integrated disease management (IDM) in crop plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelrahman, M., Abdel-Motaal, F., El-Sayes, M., Jogaiah, S., Shigyo, M., Ito, S., & Tran, L. P. (2016). Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science, 246, 128–138.

    Article  CAS  PubMed  Google Scholar 

  • Agosin, E., Volpe, D., Mun~oz, G., San Martin, R., & Crawford, A. (1997). Effect of culture conditions on spore shelf life of the biocontrol agent Trichoderma harzianum. World Journal of Microbiology and Biotechnology, 13, 225–232.

    Article  Google Scholar 

  • Al-Naemi, F. A., Ahmed, T. A., Nishad, R., & Radwan, O. (2016). Antagonistic effects of Trichoderma harzianum isolates against Ceratocystis radicicola: Pioneering a biocontrol strategy against black scorch disease in date palm trees. Journal of Phytopathology, 164, 464–475.

    Article  CAS  Google Scholar 

  • Al-Sadi, A. M., Al-Alawi, Z. A., & Patzelt, A. (2015). Association of Alternaria alternata and Cladosporium cladosporioides with leaf spot in Cissus quadrangularis and Ficus sycomorus. Plant Pathology Journal, 14, 44–47.

    Article  CAS  Google Scholar 

  • Altomare, C., Norvell, W. A., Bjorkman, T., & Harman, G. E. (1999). Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Applied and Environmental Microbiology, 65, 2926–2933.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade-Linares, D. R., Grosch, R., Franken, P., Rexer, K. H., Kost, G., Restrepo, S., Cepero de Garcia, M. C., & Maximova, E. (2011). Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes. Mycologia, 103, 710–721.

    Article  PubMed  Google Scholar 

  • Anita, S., Ponmurugan, P., & Ganesh Babu, R. (2012). Significance of secondary metabolites and enzymes secreted by Trichoderma atroviride isolates for the biological control of Phomopsis canker disease. African Journal of Biotechnology, 11, 10350–10357.

    Article  CAS  Google Scholar 

  • Anupama, N. B., Jogaiah, S., Ito, S., Amruthesh, K. N., & Tran, P. L. S. (2015). Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizoshpere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Science, 231, 62–73.

    Article  CAS  Google Scholar 

  • Askew, D. J., & Laing, M. D. (1993). An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathology, 42, 686–690.

    Article  Google Scholar 

  • Atanasova, L., Druzhinina, I. S., & Jaklitsch, W. M. (2013). Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In P. K. Mukherjee, B. A. Horwitz, U. S. Singh, M. Mukherjee, & M. Schmoll (Eds.), Trichoderma: Biology and applications (p. 10). Wallingford: CABI.

    Chapter  Google Scholar 

  • Barbercheck, M. E. (2011). Biological control of insect pests. Extension, 18931.

    Google Scholar 

  • Battaglia, E., Klaubauf, S., Vallet, J., Ribot, C., Lebrun, M. H., & de Vries, R. P. (2013). Xlr1 is involved in the transcriptional control of the pentose catabolic pathway, but not hemi-cellulolytic enzymes in Magnaporthe oryzae. Fungal Genetics and Biology, 57, 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Bhagat, D., Koche, M., Ingle, R. W., & Mohod, Y. N. (2010). Evaluate the suitability of locally available substrates for mass multiplication of cellulolytic fungi and bacteria. Journal of Plant Diseases Science, 5, 27–29.

    Google Scholar 

  • Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Błaszczyk, L., Popiel, D., Chełkowski, J., Koczyk, G., Samuels, G. J., Sobieralski, K., & Siwulski, M. (2011). Species diversity of Trichoderma in Poland. Journal of Applied Genetics, 52, 233–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brotman, Y., Lisec, J., Méret, M., Chet, I., Willmitzer, L., & Viterbo, A. (2012). Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology, 158, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Brotman, Y., Landau, U., Cuadros-Inostroza, A., Takayuki, T., Fernie, A. R., Chet, I., Viterbo, A., & Willmitzer, L. (2013). Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. Plos Pathogens. https://doi.org/10.1371/journal.ppat.1003221.

  • Chaverri, P., & Samuels, G. J. (2004). Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): Species with green ascospores. Studies in Mycology, 48, 1–116.

    Google Scholar 

  • Contreras-Cornejo, H. A., Macias-Rodriguez, L., Beltran-Pena, E., Herrera Estrella, A., & Lopez-Bucio, J. (2011). Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signaling and Behavior, 6, 1554–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dababat, A. A., Sikora, R. A., & Hauschild, R. (2006). Use of Trichoderma harzianum and Trichoderma viride for the biological control of Meloidogyne incognita on tomato. Communication in Agriculture and Applied Biological Science, 71, 953–961.

    CAS  Google Scholar 

  • Dean, J. F. D., Gamble, H. R., & Anderson, J. D. (1989). The ethylene biosynthesis-inducing xylanase: Its induction in Trichoderma viride and certain plant pathogens. Phytopathology, 79, 1071–1078.

    Article  CAS  Google Scholar 

  • Deshmukh, S., Hueckelhoven, R., Schaefer, P., Imani, J., Sharma, M., Weiss, M., Waller, F., & Kogel, K. H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceeding of the National Academy of Sciences USA, 103, 18450–18457.

    Article  CAS  Google Scholar 

  • Djonovic, S., Vargas, A. W., Kolomiets, V. M., Horndeski, M., Wiest, A., & Kenerley, C. M. (2007). A proteinaceous elicitor sm1 from the beneficial fungal Trichoderma virens is required for induced systemic resistance in maize. Plant Physiology, 145, 875–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druzhinina, I., & Kubicek, C. P. (2005). Species concepts and biodiversity in Trichoderma and Hypocrea: From aggregate species to species clusters. Journal of Zhejiang University (Science), 6, 100–112.

    Article  Google Scholar 

  • Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. V., & Kubicek, C. P. (2011). Trichoderma: The genomics of opportunistic success. Nature Reviews Microbiology, 9, 749–759.

    Article  CAS  PubMed  Google Scholar 

  • Elad, Y., Chet, I., & Henis, Y. (1981). A selective medium for improving quanitiative isolation of Trichoderma spp. from soil. Phytoparasitica, 9, 59–67.

    Article  Google Scholar 

  • El_Komy, M. H., Saleh, A. A., Eranthodi, A., & Molan, Y. Y. (2015). Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium Wilt. Plant Pathology Journal, 31, 50–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedl, M. A., & Druzhinina, I. S. (2012). The tribal dwelling in soil: Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species regulating the development of each other. Microbiology, 158, 69–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., & Chou, J. Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signaling and Behavior, 10, e1048052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of Indole acetic acid. Plant Physiology, 26, 192–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil, S. V., Pastor, S., & March, G. J. (2009). Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiological Research, 164, 196–205.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. https://doi.org/10.6064/2012/963401.

  • Grzywacz, D., Stevenson, P. C., Mushobozi, W. L., Belmain, S., & Wilson, K. (2014). The use of indigenous ecological resources for pest control in Africa. Food Security, 6, 71–86.

    Article  Google Scholar 

  • Guédez, C., Gañizalez, L., Castillo, C., Olivar, R., Maffei, M., et al. (2010). Alternativas para el control de hongos postcosecha en naranja valencia (Citrus sinensis). Revista de la Sociedad Venezolana de Microbiología, 3, 43–47.

    Google Scholar 

  • Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194.

    Article  CAS  PubMed  Google Scholar 

  • Harman, G. E. (2011). Multifunctional fungal plant symbionts: New tools to enhance plant growth and productivity. New Phytologist, 189, 647–649.

    Article  PubMed  Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—Opportunistic a virulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Harman, G. E., Herrera-Estrella, A. H., Benjamin, A., & Matteo, L. (2012). Special issue: Trichoderma – From basic biology to biotechnology. Microbiology, 58, 1–2.

    Article  CAS  Google Scholar 

  • Hermosa, M. R., Grondona, I., Iturriaga, E. A., Diaz-Minguez, J. M., Castro, C., Monte, E., & Garcia-Acha, I. (2000). Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied and Environmental Microbiology, 66, 1890–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermosa, R., Rubio, M. B., Cardoza, R. E., Nicolas, C., Monte, E., & Gutierrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. International Microbiology, 16, 69–60.

    CAS  PubMed  Google Scholar 

  • Hetong, Y., Ryder, M., & Wenhua, T. (2005). Toxicity of fungicides and selective medium development for isolation and enumeration of Trichoderma spp. in agricultural soils. Shandong Science, 18, 113–123.

    Google Scholar 

  • Hirte, W. F. (1969). The use of dilution plate method for the determination of soil microflora. The qualitative demonstration of bacteria and actinomycetes. Zentrall Bakteriol Parasitenkd Infektionskr Hyg, 123, 167–178.

    CAS  Google Scholar 

  • Hussey, N. W., & Scopes, N. (1985). Biological pest control: The glasshouse experience. Ithaca: Cornell University Press.

    Google Scholar 

  • Ishihara, A., Hashimoto, Y., Tanaka, C., Dubouzet, J. G., Nakao, T., Matsuda, F., Nishioka, T., Miyagawa, H., & Wakasa, K. (2008). The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonine production. Plant Journal, 54, 481–495.

    Article  CAS  Google Scholar 

  • Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66.

    Article  CAS  PubMed  Google Scholar 

  • Jaklitsch, W. M. (2011). European species of Hypocrea part II: Species with hyaline ascospores. Fungal Diversity, 48, 1–250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaklitsch, W. M., & Voglmayr, H. (2013). New combinations in Trichoderma (Hypocreaceae, Hypocreales). Mycotaxon, 126, 143–156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jegathambigai, V., Karunaratne, M. D., Svinningen, A., & Mikunthan, G. (2008). Biocontrol of root-knot nematode, Meloidogyne incognita damaging queen palm, Livistona rotundifolia using Trichoderma species. Communications in Agricultural and Applied Biological Sciences, 73, 681–687.

    CAS  PubMed  Google Scholar 

  • Jogaiah, S., Abdelrahman, M., Tran, L. S. P., & Ito, S. (2013). Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany, 64, 3829–3842.

    Article  CAS  PubMed  Google Scholar 

  • Jogaiah, S., Abdelrahman, M., Ito, S.-I., & Tran, L.-S. P. (2018). Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Molecular Plant Pathology, 19, 870–882.

    Article  CAS  PubMed  Google Scholar 

  • John, R. P., Tyagi, R. D., Prévost, D., Brar, S. K., Pouleur, S., & Surampalli, R. Y. (2010). Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protection, 29, 1452–1459.

    Article  Google Scholar 

  • Khan, Z. R., Midega, C. A. O., Bruce, T. J. A., Hooper, A. M., & Pickett, J. A. (2010). Exploiting phytochemicals for developing a ‘push–pull’ crop protection strategy for cereal farmers in Africa. Journal of Experimental Botany, 61, 4185–4196.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. R., Mohiddin, F. A., Ejaz, M. N., & Khan, M. M. (2012). Management of root-knot disease in eggplant through the application of biocontrol fungi and dry neem leaves. Turkish Journal of Biology, 36, 161–169.

    Google Scholar 

  • Lahlali, R., & Hijri, M. (2010). Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiology Letters, 311, 152–159.

    Article  CAS  PubMed  Google Scholar 

  • Maina, P. K., Wachira, P. M., Okoth, S. A., & Kimenju, J. W. (2015). Distribution and diversity of indigenous Trichoderma species in Machakos County, Kenya. British Microbiology Research Journal, 9, 1–15.

    Article  Google Scholar 

  • Mejía, C. L., Rojas, I. E., Maynard, Z., Bael, V. S., Arnold, E. A., et al. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46, 4–14.

    Article  Google Scholar 

  • Morgan, S. (2015). Biofuel plants as refugia for pest biocontrol agents. Dissertation. http://hdl.handle.net/10182/6784

  • Mukherjee, P. K., Mukherjee, A. K., & Kranthi, S. (2013). Reclassification of Trichoderma viride (TNAU), the most widely used commercial biofungicide in India, as Trichoderma asperelloides. The Open Biotechnology Journal, 7, 7–9.

    Article  CAS  Google Scholar 

  • Mulaw, T. B., Kubicek, C. P., & Druzhinina, I. S. (2010). The rhizosphere of Coffea arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Fungal Diversity, 2, 527–549.

    Article  CAS  Google Scholar 

  • Munir, S., Jamal, Q., Bano, K., Sherwani, S. K., Bokhari, T. Z., et al. (2013). Biocontrol ability of Trichoderma. International Journal of Agriculture Crop Sciences, 6, 1246–1252.

    CAS  Google Scholar 

  • Naeimi, S., Kocsubé, S., Antal, Z., Okhovvat, S. M., Javan-Nikkhah, M., Vágvölgyi, C., & Kredics, L. (2011). Strain-specific SCAR markers for the detection of Trichoderma harzianum AS12-2, a biological control agent against Rhizoctonia solani, the causal agent of rice sheath blight. Acta Biologica Hungarica, 62, 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Overton, B. E., Stewart, E. L., & Geiser, D. M. (2006). Taxonomy and phylogenetic relationships of nine species of Hypocrea with anamorphs assignable to Trichoderma section Hypocreanum. Studies in Mycology, 56, 39–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Papavizas, G. C., & Lumsden, R. D. (1982). Improved medium for isolation of Trichoderma spp. from soil. Plant Diseases, 66, 1019–1020.

    Article  Google Scholar 

  • Parab, P. B., Diwakar, M. P., Sawant, U. K., & Kadam, J. J. (2008). Studies on mass multiplication, different methods of application of bioagent T. harzianum and their survival in rhizosphere and soil. Journal of Plant Disease Sciences, 3, 215–218.

    Google Scholar 

  • Parrella, M. L. (1990). Biological pest control in ornamentals: Status and perspectives. SROP/WPRS Bull, XIII/5, 161–168.

    Google Scholar 

  • Paul, B. (2003). Characterization of a new species of Phythium isolated from a wheat field in northern France and its antagonism towards Botrytis cinerea causing grey mould disease. FEMS Microbiology Letters, 224, 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Perazzolli, M., Roatti, B., Bozza, E., & Pertot, I. (2011). Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biological Control, 58, 74–82.

    Article  Google Scholar 

  • Pramod, K. T., & Palakshappa, M. G. (2009). Evaluation of suitable substrates for on farm production of antagonist Trichoderma harzianum. Karnataka Journal of Agriculture Sciences, 22, 115–117.

    Google Scholar 

  • Rahman, M. A., Begum, M. F., & Alam, M. F. (2009). Screening of Trichoderma isolates as a biological control agent against Ceratocystis paradoxa causing pineapple disease of sugarcane. Mycobiology, 37, 277–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramada, M. H. S., Lopes, F. A. C., Ulhoa, C. J., & Silva, R. N. (2010). Optimized microplate b-1,3-glucanase assay system for Trichoderma spp. screening. Journal of Microbiological Methods, 81, 6–1.

    Article  CAS  PubMed  Google Scholar 

  • Rini, C. R., & Sulochana, K. K. (2007). Substrate evaluation for multiplication of Trichoderma spp. Journal of Tropical Agriculture, 45, 58–60.

    Google Scholar 

  • Ruocco, M., Lanzuise, S., Vinale, F., Marra, R., Turrà, D., Woo, S. L., & Lorito, M. (2009). Identification of a new biocontrol gene in Trichoderma atroviride: The role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular Plant Microbe Interaction, 22, 291–301.

    Article  CAS  Google Scholar 

  • Sahebani, N., & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry, 40, 2016–2020.

    Article  CAS  Google Scholar 

  • Salas-Marina, M. A., Silva-Flores, M. A., Uresti-Rivera, E. E., Castro-Longoria, E., & Herrera-Estrella, A. (2011). Sergio Casas-Flores colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 131, 15–26.

    Article  CAS  Google Scholar 

  • Salas-Marina, M. A., Isordia-Jasso, M. I., Islas-Osuna, M. A., Delgado-Sánchez, P., Jiménez-Bremont, J. F., Rodríguez-Kessler, M., Rosales-Saavedra, M. T., Herrera-Estrella, A., & Casas-Flores, S. (2015). The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Frontiers in Plant Science, 6, 77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarasan, V., Kite, G. C., Sileshi, G. W., & Stevenson, P. C. (2011). The application of Phytochemistry and in vitro tools to the sustainable utilisation of medicinal and pesticidal plants for income generation and poverty alleviation. Plant Cell Reports, 30, 1163–1172.

    Article  CAS  PubMed  Google Scholar 

  • Schmoll, M., Esquivel-Naranjo, E. U., & Herrera-Estrella, A. (2010). Trichoderma in the light of day – Physiology and development. Fungal Genetics and Biology, 47, 909–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra, G., Aviles, M., Casanova, E., Borrero, C., & Trilias, I. (2013). Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathology Mediterranean, 52, 77–83.

    Google Scholar 

  • Sharma, N., & Trivedi, P. C. (2005). Microbial bioagents: Economic multiplication and management of fungal nematode complex on cumin. Indian Journal of Biotechnology, 4, 419–421.

    CAS  Google Scholar 

  • Sharma, A., Diwevidi, V. D., Singh, S., Pawar, K. K., Jerman, M., Singh, L. B., Singh, S., & Srivastawa, D. (2013). Biological control and its important in agriculture. International Journal of Biotechnology Bioengineering. Research, 4, 175–180.

    Google Scholar 

  • Shoresh, M., & Harman, G. E. (2008). The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach. Plant Physiology, 147, 2147–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Siameto, E. N., Okoth, S., Amugune, N. O., & Chege, N. C. (2010). Antagonism of Trichoderma harzianum isolates on soil borne plant pathogenic fungi from Embu District, Kenya. Journal of Yeast and Fungal Research, 1, 47–54.

    Google Scholar 

  • Spiegel, Y., & Chet, I. (1998). Evaluation of Trichoderma spp. as a biocontrol agent against soilborne fungi and plant-parasitic nematodes in Israel. Integrated Pest Management Reviews, 3, 169–175.

    Article  Google Scholar 

  • Stevenson, P. C., Kite, G. C., Lewis, G. P., Nyrienda, S. P., Forest, F., Belmain, S. R., et al. (2012). Distinct chemotypes of Tephrosia vogelii: Implications for insect pest control and soil enrichment. Phytochemistry, 78, 135–146.

    Article  CAS  PubMed  Google Scholar 

  • Stratonovitch, P., & Semenov, M. A. (2015). Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. Journal of Experimental Botany, 66, 3599–3609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subash, N., Meenakshisundaram, M., Sasikumar, C., & Unnamalai, N. (2014). Mass cultivation of Trichoderma harizanum using agricultural wate as a substrate for the management of damping off disease and growth promotion in chilli plants (Capsicum Annum L.). International Journal of Pharmacy and Pharmaceutical Sciences, 6, 188–192.

    Google Scholar 

  • Sun, R. Y., Liu, Z. C., Fu, K., Fan, L., & Chen, J. (2012). Trichoderma biodiversity in China. Journal of Applied Genetics, 53, 343–354.

    Article  CAS  PubMed  Google Scholar 

  • Tomer, A., Singh, R., & Maurya, M. (2015). Determination of compatibility of Pseudomonas fluorescens and Trichoderma harizianum grown on deoiled cakes of neem and jatropha for mass multiplication of P. fluorescens and T. harizianum in vitro. African Journal of Agricultural Research, 10, 67–75.

    Article  Google Scholar 

  • Tripathi, P., & Dubey, N. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32, 235–245.

    Article  Google Scholar 

  • Upadhyay, J. P., & Mukhopadhyay, A. N. (2009). Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugar beet. Tropical Pest Management, 32, 216–220.

    Google Scholar 

  • Van Driesche, R. G., & Bellows, T. S. (1996). Biological control. New York: Chapman & Hall. International Thomson Publishing Co..

    Book  Google Scholar 

  • Van Wees, S. C. M., Van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Vieira, F. C. S., & Nahas, E. (2005). Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiology Research, 160, 197–202.

    Article  CAS  Google Scholar 

  • Waghunde, R. R., Shelake, R. M., & Sabalpara, A. N. (2016). Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11, 1952–1965.

    Google Scholar 

  • Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from the soil. Soil Science Society of America Journal, 29, 677–678.

    Article  CAS  Google Scholar 

  • Williams, J., Clarkson, J. M., Mills, P. R., & Cooper, R. M. (2003). A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost. Applied and Environmental Microbiology, 69, 4190–4191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, L., Tan, C., Song, J., Yang, Q., Yu, L., & Lia, X. (2015). Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism. Brazilian Journal of Microbiology, 47, 468–479.

    Article  CAS  Google Scholar 

  • Yoshioka, Y., Ichikawa, H., Naznin, H. A., Kogure, A., & Hyakumachi, M. (2012). Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed-borne diseases of rice. Pest Management Science, 68, 60–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudisha Jogaiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelrahman, M., Jogaiah, S. (2019). Defense Mechanism and Diverse Actions of Fungal Biological Control Agents Against Plant Biotic Stresses. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_20

Download citation

Publish with us

Policies and ethics