Skip to main content

CRISPR Applications in Plant Genetic Engineering and Biotechnology

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

Genetically modified (GM) crops were first introduced for commercial use in 1996 and as of 2017 were grown on 190 million hectares in 26 countries. Even with the potential these crops believed for worldwide food security, GM crops lately were linked with uncorroborated health concerns, environmental safety, ethical issues and restrictions in European countries.

Over the course of recent years, through improvements in the plant research, new methods have been developed allowing for unambiguous mutations with precision. This includes technologies like mega nucleases, TALENs and zinc finger nucleases (ZFN). These genetic editing techniques are complex, difficult to manipulate constructs and costly. The approval of genetic editing has potential for inherent improvement of crops, improved disease tolerance, improved food, energy, and lint (fibre) security across world. Most importantly, the technology has potential of creating new varieties of crop, tastier vegetables and fibre full grains.

Advances in CRISPR/Cas9 radically cut the cost of performing genetic editing trials, easier implementations and permitted for prolonged use of the technology in plant sciences. We describe here assessment on development, use and trials of CRISPR/Cas9 technology and its implication in crops basic research and crop genetic improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, K., Araki, E., Suzuki, Y., Toki, S., & Saika, H. (2018). Production of high oleic/low linoleic rice by genetic editing. Plant Physiology and Biochemistry, 131, 58–62.

    Article  CAS  PubMed  Google Scholar 

  • Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M., & Mahfouz, M. M. (2015). CRISPR/Cas9mediated viral interference in plants. Genome Biology, 16(1), 238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, M., Turesson, H., Nicolia, A., Fält, A. S., Samuelsson, M., & Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanumtuberosum) by transient CRISPRCas9 expression in protoplasts. Plant Cell Reports, 36(1), 11728.

    Article  CAS  Google Scholar 

  • Araki, M., & Ishii, T. (2015). Towards social acceptance of plant breeding by genetic editing. Trends in Plant Science, 20, 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Araki, M., Nojima, K., & Ishii, T. (2014). Caution required for handling genetic editing technology. Trends in Biotechnology, 32, 234–237.

    Article  CAS  PubMed  Google Scholar 

  • Bae, S., Park, J., & Kim, J. S. (2014). CasOFFinder: A fast and versatile algorithm that searches for potential off target sites of Cas9 RNAguided endonucleases. Bioinformatics, 30(10), 14735.

    Article  CAS  Google Scholar 

  • Baltes, N. J., GilHumanes, J., Cermak, T., Atkins, P. A., & Voytas, D. F. (2014). DNA replicons for plant genome engineering. The Plant Cell, 26(1), 15163.

    Article  CAS  Google Scholar 

  • Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPRassociated9 system. Plant Physiology, 166(3), 12927.

    Article  CAS  Google Scholar 

  • Butler, N. M., Baltes, N. J., Voytas, D. F., & Douches, D. S. (2016). Geminivirus mediated genetic editing in potato (Solanumtuberosum L.) using sequencespecific nucleases. Frontiers in Plant Science, 7, 1045.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai, Y., Chen, L., Liu, X., Sun, S., Wu, C., Jiang, B., Han, T., & Hou, W. (2015). CRISPR/Cas9mediatedgenetic editing in soybean hairy roots. PLoS One, 10(8), e0136064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho, A., Van Deynze, A., ChiHam, C., & Bennett, A. B. (2014). Genetically engineered crops that fly under the US regulatory radar. Nature Biotechnology, 32, 1087–1091.

    Article  CAS  PubMed  Google Scholar 

  • Casini, A., Olivieri, M., Petris, G., Montagna, C., Reginato, G., Maule, G., Lorenzin, F., Prandi, D., Romanel, A., Demichelis, F., & Inga, A. (2018). A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nature Biotechnology, 36(3), 265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y., & Voytas, D. F. (2015). High frequency, precise modification of the tomato genome. Genome Biology, 16(1), 232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak, T., Curtin, S. J., GilHumanes, J., Čegan, R., Kono, T. J., Konečná, E., Belanto, J. J., Starker, C. G., Mathre, J. W., Greenstein, R. L., & Voytas, D. F. (2017). A multipurpose toolkit to enable advanced genome engineering in plants. The Plant Cell, 29, 1196–1217. tpc00922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., & GalOn, A. (2016). Development of broad virus resistance in nontransgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology, 17(7), 114053.

    Article  CAS  Google Scholar 

  • Collonnier, C., Epert, A., Mara, K., Maclot, F., GuyonDebast, A., Charlot, F., White, C., Schaefer, D. G., & Nogué, F. (2017). CRISPRCas9mediated efficient directed mutagenesis and RAD51dependent and RAD51independent gene targeting in the moss Physcomitrella patens. Plant Biotechnology Journal, 15(1), 12231.

    Article  CAS  Google Scholar 

  • Davidson, J. (2010). GM plants: Science, politics and EC regulations. Plant Science, 178, 948.

    Google Scholar 

  • Durr, J., Papareddy, R., Nakajima, K., & GutierrezMarcos, J. (2018). Highly efficient heritable targeted deletions of gene clusters and noncoding regulatory regions in Arabidopsis using CRISPR/Cas9. Scientific Reports, 8(1), 4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler, C., Gruetzner, R., Kandzia, R., & Marillonnet, S. (2009). Golden gate shuffling: A onepot DNA shuffling method based on type IIs restriction enzymes. PLoS One, 4(5), e5553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European_Academies’_Science_Advisory_Council. (2015). Statement: New breeding techniques. http://www.easac.eu/fileadmin/PDF_s/reports_statements/Easac_14_NBT.pdf. Accessed 7 Mar 2016.

  • European_Plant_Science_Organisation. (2015). Statement: Crop Genetic Improvement Technologies. http://www.epsoweb.org/file/2147. Accessed 7 Mar 2016.

  • European_Seed_Association. (2015). Regulatory approaches to modern plant breeding the case of mutagenesis and new gene editing technologies. https://www.euroseeds.eu/system/files/publications/files/esa_15.0543_0.pdf. Accessed 7 Mar 2015.

  • Fauser, F., Roth, N., Pacher, M., Ilg, G., SánchezFernández, R., Biesgen, C., & Puchta, H. (2012). In planta gene targeting. Proceedings of the National Academy of Sciences, 109(19), 753540.

    Article  Google Scholar 

  • Fauser, F., Schiml, S., & Puchta, H. (2014). Both CRISPR/Cas based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. The Plant Journal, 79(2), 34859.

    Article  CAS  Google Scholar 

  • Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., & Zhu, J. K. (2013). Efficient genetic editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, Z., Mao, Y., Xu, N., Zhang, B., Wei, P., Yang, D. L., Wang, Z., Zhang, Z., Zheng, R., Yang, L., & Zeng, L. (2014). Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences, 111(12), 46327.

    Article  CAS  Google Scholar 

  • Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A., & Charpentier, E. (2016). The CRISPR associated DNA cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature, 532(7600), 517.

    Article  CAS  PubMed  Google Scholar 

  • Friedland, A. E., Baral, R., Singhal, P., Loveluck, K., Shen, S., Sanchez, M., Marco, E., Gotta, G. M., Maeder, M. L., Kennedy, E. M., & Kornepati, A. V. (2015). Characterization of Staphylococcus aureus Cas9: A smaller Cas9 for all in one adeno associated virus delivery and paired nickase applications. Genome Biology, 16(1), 257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., Wu, Y., Zhao, P., & Xia, Q. (2015). CRISPR/Cas9mediated targeted mutagenesis in Nicotianatabacum. Plant Molecular Biology, 87(12), 99110.

    Google Scholar 

  • Gao, R., Feyissa, B. A., Croft, M., & Hannoufa, A. (2018). Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta, 247(4), 104350.

    Article  CAS  Google Scholar 

  • Gétaz, M., Baeyen, S., Blom, J., Maes, M., Cottyn, B., & Pothier, J. F. (2018). High quality draft genome sequences of five Xanthomonas arboricolapv. fragariae Isolates. Genome announcements., 6(7), e0158517.

    Article  Google Scholar 

  • Gilbert, L. A., Horlbeck, M. A., Adamson, B., Villalta, J. E., Chen, Y., Whitehead, E. H., Guimaraes, C., Panning, B., Ploegh, H. L., Bassik, M. C., & Qi, L. S. (2014). Genome scale CRISPR mediated control of gene repression and activation. Cell, 159(3), 64761.

    Article  CAS  Google Scholar 

  • GilHumanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C. V., SánchezLeón, S., Baltes, N. J., Starker, C., Barro, F., Gao, C., & Voytas, D. F. (2017). High efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. The Plant Journal, 89(6), 125162.

    Google Scholar 

  • GM_Freeze. (2016). The case for regulating gene edited crops. http://www.gmfreeze.org/newsreleases/266/. Accessed 7 Mar 2016.

  • GMWATCH. (2014). “Genetic editing”: GM by another name. http://www.gmwatch.org/news/archive/2014/15546genomeeditinggmbyanothername. Accessed 19 Feb 2016.

  • Gomez, M. A., Lin, Z. J., Moll, T., Chauhan, R. D., Renninger, K., Beyene, G., Taylor, N. J., Carrington, J. C., Staskawicz, B. J., & Bart, R.(2018). Simultaneous CRISPR/Cas9 mediated editing of cassava eIF4E isoforms nCBP1 and nCBP2 reduces cassava brown streak disease symptom severity and incidence. bioRxiv. 209874.

    Google Scholar 

  • Gorbunova, V., & Levy, A. A. (1997). Nonhomologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Research, 25(22), 46507.

    Article  Google Scholar 

  • Green_Peace. (2015). Policy briefing gene editing of plants—GM through the back door? http://www.greenpeace.org/euunit/Global/euunit/reportsbriefings/2015/Greenpeace_Geneediting_30112015%20%202.pdf. Accessed 4 Mar 2016.

  • Guilinger, J. P., Thompson, D. B., & Liu, D. R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 32(6), 577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y., & Lu, Y. (2015). CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell, 162(4), 90010.

    Article  CAS  Google Scholar 

  • Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J. B., SchneiderMaunoury, S., Shkumatava, A., Teboul, L., Kent, J., & Joly, J. S. (2016). Evaluation of off target and ontarget scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology, 17(1), 148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn, F., Mantegazza, O., Greiner, A., Hegemann, P., Eisenhut, M., & Weber, A. P. (2017). An efficient visual screen for CRISPR/Cas9 activity in Arabidopsis thaliana. Frontiers in Plant Science, 8, 39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halterman, D., Guenthner, J., Collinge, S., Butler, N., & Douches, D. (2016). Biotech potatoes in the 21st century: 20 years since the first biotech potato. American Journal of Potato Research, 93(1), 120.

    Article  CAS  Google Scholar 

  • Hartung, F., & Schiemann, J. (2014). Precise plant breeding using new genetic editing techniques: Opportunities, safety and regulation in the EU. The Plant Journal, 78(5), 74252.

    Article  CAS  Google Scholar 

  • Harvey, F. (2014). Genetic editing of crops may be restricted by EU rules, warn scientists. In The Guardian, Retrieved from http://www.theguardian.com/environment/2014/jul/21/genomeeditingcropsrestrictedeurulesscientistswarn.

  • Hayut, S. F., Bessudo, C. M., & Levy, A. A. (2017). Targeted recombination between homologous chromosomes for precise breeding in tomato. Nature Communications, 8, 15605.

    Article  CAS  Google Scholar 

  • Holkers, M., Maggio, I., Henriques, S. F., Janssen, J. M., Cathomen, T., & Gonçalves, M. A. (2014). Adenoviral vector DNA for accurate genetic editing with engineered nucleases. Nature Methods, 11(10), 1051.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, S. G., Lee, C. Y., & Tseng, C. S. (2018). Heterologous expression of rice 9cisepoxycarotenoid dioxygenase 4 (OsNCED4) in Arabidopsis confers sugar oversensitivity and drought tolerance. Botanical Studies, 59(1), 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyun, Y., Kim, J., Cho, S. W., Choi, Y., Kim, J. S., & Coupland, G. (2015). Site directed mutagenesis in Arabidopsis thaliana using dividing tissue targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta, 241(1), 27184.

    Article  CAS  Google Scholar 

  • IFOAM_EU. (2015). New plant breeding techniques position paper. http://www.ifoameu.org/sites/default/files/ifoameu_policy_npbts_position_final_20151210.pdf. Accessed 4 Mar 2016.

  • Ishii, T., & Araki, M. (2016). Consumer acceptance of food crops developed by genetic editing. Plant Cell Reports, 35(7), 150718.

    Article  CAS  Google Scholar 

  • Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 542933.

    Article  Google Scholar 

  • Ito, Y., NishizawaYokoi, A., Endo, M., Mikami, M., & Toki, S. (2015). CRISPR/Cas9mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications, 467(1), 7682.

    Article  CAS  Google Scholar 

  • Iwase, A., Mita, K., Nonaka, S., Ikeuchi, M., Koizuka, C., Ohnuma, M., Ezura, H., Imamura, J., & Sugimoto, K. (2015). WIND1based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research, 128(3), 38997.

    Article  CAS  Google Scholar 

  • Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 15(1), 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, H., & Wang, N. (2014a). Targetedgenetic editing of sweet orange using Cas9/sgRNA. PLoS One, 9(4), e93806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, H., & Wang, N. (2014b). Xcc facilitated agroinfiltration of citrus leaves: A tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Reports, 33(12), 19932001.

    Article  CAS  Google Scholar 

  • Jia, H., Zhang, Y., Orbović, V., Xu, J., White, F. F., Jones, J. B., & Wang, N. (2017). Genetic editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal, 15(7), 81723.

    Article  CAS  Google Scholar 

  • Jiang, W. Z., Zhou, H. B., Bi, H. H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41, e188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, W. Z., Henry, I. M., Lynagh, P. G., Comai, L., Cahoon, E. B., & Weeks, D. P. (2017). Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnology Journal, 15(5), 64857.

    Article  CAS  Google Scholar 

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821. 1225829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatodia, S., Bhatotia, K., Passricha, N., Khurana, S. M. P., & Tuteja, N. (2016). The CRISPR/Cas genome editing tool: Application in improvement of crops. Frontiers in Plant Science, 7, 506.

    Google Scholar 

  • Khatodia, S., Bhatotia, K., & Tuteja, N. (2017). Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops. Bioengineered, 8(3), 2749.

    Article  CAS  Google Scholar 

  • Kim, D., Kim, J., Hur, J. K., Been, K. W., Yoon, S. H., & Kim, J. S. (2016). Genome wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nature Biotechnology, 34(8), 863.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., Alptekin, B., & Budak, H. (2018). CRISPR/Cas9 genetic editing in wheat. Functional and Integrative Genomics, 18(1), 3141.

    Article  CAS  Google Scholar 

  • KishiKaboshi, M., Aida, R., & Sasaki, K. (2017). Generation of gene edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology, 58(2), 21626.

    Google Scholar 

  • Klap, C., Yeshayahou, E., Bolger, A. M., Arazi, T., Gupta, S. K., Shabtai, S., Usadel, B., Salts, Y., & Barg, R. (2017). Tomato facultative parthenocarpy results from SlAGAMOUSLIKE 6 loss of function. Plant Biotechnology Journal, 15(5), 63447.

    Article  CAS  Google Scholar 

  • Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Topkar, V. V., Zheng, Z., & Joung, J. K. (2015). Broadening the targeting range of Staphylococcus aureusCRISPRCas9 by modifying PAM recognition. Nature Biotechnology, 33(12), 1293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., & Joung, J. K. (2016). High fidelity CRISPR–Cas9 nucleases with no detectable genome wide off target effects. Nature, 529(7587), 490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann, S., Brigham, M. D., Trevino, A. E., Joung, J., Abudayyeh, O. O., Barcena, C., Hsu, P. D., Habib, N., Gootenberg, J. S., Nishimasu, H., & Nureki, O. (2015). Genomescale transcriptional activation by an engineered CRISPRCas9 complex. Nature, 517(7536), 583.

    Article  CAS  PubMed  Google Scholar 

  • Langner, T., Kamoun, S., & Belhaj, K. (2018). CRISPR crops: Plant genetic editing toward disease resistance. Annual Review of Phytopathology, 56, 479–512. (0).

    Article  CAS  PubMed  Google Scholar 

  • Lawrenson, T., Shorinola, O., Stacey, N., Li, C., Østergaard, L., Patron, N., Uauy, C., & Harwood, W. (2015). Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA guided Cas9 nuclease. Genome Biology, 16(1), 258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., & Sheen, J. (2013a). Multiplex and homologous recombination–mediated genetic editing in Arabidopsis and Nicotianabenthamiana using guide RNA and Cas9. Nature Biotechnology, 31(8), 688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G. M., & Sheen, J. (2013b). Multiplex and homologous recombination–mediated genetic editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31(8), 688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Liu, Z. B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., Ward, R. T., Clifton, E., Falco, S. C., & Cigan, A. M. (2015). Cas9guide RNA directed genetic editing in soybean. Plant Physiology, 169, 960–970. pp00783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G., & Li, H. (2016). Reassessment of the four yield related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Frontiers in Plant Science, 7, 377.

    PubMed  PubMed Central  Google Scholar 

  • Li, B., Cui, G., Shen, G., Zhan, Z., Huang, L., Chen, J., & Qi, X. (2017). Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Scientific Reports, 7, 43320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, R., Li, R., Li, X., Fu, D., Zhu, B., Tian, H., Luo, Y., & Zhu, H. (2018). Multiplexed CRISPR/Cas9 mediated metabolic engineering of γaminobutyric acid levels in Solanum lycopersicum. Plant Biotechnology Journal, 16(2), 41527.

    Google Scholar 

  • Liang, F., Han, M., Romanienko, P. J., & Jasin, M. (1998). Homology directed repair is a major double strand break repair pathway in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 51725177.

    Google Scholar 

  • Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., & Gao, C. (2017). Efficient DNA free genetic editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 8, 14261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowder, L., Malzahn, A., & Qi, Y. (2017). Rapid construction of multiplexed CRISPRCas9 systems for plant genetic editing. In Plant pattern recognition receptors (pp. 291–307). New York: Humana Press.

    Google Scholar 

  • Lowder, L. G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T. F., Voytas, D. F., Zhang, Y., & Qi, Y. (2018). Robust transcriptional activation in plants using multiplexed CRISPRAct2. 0 and mTALEact systems. Molecular Plant, 11(2), 24556.

    Article  CAS  Google Scholar 

  • Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M. J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., & Wang, L. (2016). Morphogenic regulators baby boom and Wuschel improve monocot transformation. The Plant Cell, 28(9), 19982015.

    Article  CAS  Google Scholar 

  • Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., & Xie, Y. (2015). A robust CRISPR/Cas9 system for convenient, high efficiency multiplex genetic editing in monocot and dicot plants. Molecular Plant, 8(8), 127484.

    Google Scholar 

  • Ma, X., Zhu, Q., Chen, Y., & Liu, Y. G. (2016). CRISPR/Cas9 platforms for genetic editing in plants: Developments and applications. Molecular Plant, 9(7), 96174.

    Article  CAS  Google Scholar 

  • Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., SlametLoedin, I., Čermák, T., Voytas, D. F., Choi, I. R., & ChadhaMohanty, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16, 1918–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J., Charpentier, E., Haft, D. H., & Horvath, P. (2015). An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 13(11), 722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy, M., Viola, R., Jung, M. H., Koo, O. J., Kim, S., Kim, J. S., Velasco, R., & NagamangalaKanchiswamy, C. (2016). DNA free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science, 7, 1904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazier, M., Flamain, F., Nicolaï, M., Sarnette, V., & Caranta, C. (2011). Knockdown of both eIF4E1 and eIF4E2 genes confers broad spectrum resistance against potyviruses in tomato. PLoS One, 6(12), e29595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao, C., Xiao, L., Hua, K., Zou, C., Zhao, Y., Bressan, R. A., & Zhu, J. K. (2018). Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences, 115, 6058–6063. 201804774.

    Article  CAS  Google Scholar 

  • Mojica, F. J., Juez, G., & RodriguezValera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular Microbiology, 9(3), 61321.

    Article  Google Scholar 

  • Mojica, F. J., DíezVillaseñor, C., GarcíaMartínez, J., & Almendros, C. (2009). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3), 73340.

    Google Scholar 

  • MorenoMateos, M. A., Vejnar, C. E., Beaudoin, J. D., Fernandez, J. P., Mis, E. K., Khokha, M. K., & Giraldez, A. J. (2015). CRISPRscan: Designing highly efficient sgRNAs for CRISPRCas9 targeting in vivo. Nature Methods, 12(10), 982.

    Article  CAS  Google Scholar 

  • Nakajima, I., Ban, Y., Azuma, A., Onoue, N., Moriguchi, T., Yamamoto, T., Toki, S., & Endo, M. (2017). CRISPR/Cas9mediated targeted mutagenesis in grape. PLoS One, 12(5), e0177966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA guided endonuclease. Nature Biotechnology, 31(8), 691.

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D., & Kamoun, S. (2017). Rapid generation of a transgenefree powdery mildew resistant tomato by genome deletion. Scientific Reports, 7(1), 482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., & Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 156, 935–949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien, A., & Bailey, T. L. (2014). GTScan: Identifying unique genomic targets. Bioinformatics, 30(18), 26735.

    Google Scholar 

  • Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., Chen, L., & Lu, G. (2016). CRISPR/Cas9mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6, 24765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, A., Chen, S., Lei, T., Xu, L., He, Y., Wu, L., Yao, L., & Zou, X. (2017). Engineering canker resistant plants through CRISPR/Cas9targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal, 15(12), 150919.

    Article  CAS  Google Scholar 

  • Peterson, B. A., Haak, D. C., Nishimura, M. T., Teixeira, P. J., James, S. R., Dangl, J. L., & Nimchuk, Z. L. (2016). Genome wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One, 11(9), e0162169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., AlShareef, S., Aouida, M., & Mahfouz, M. M. (2015). RNA guided transcriptional regulation in planta via synthetic dCas9based transcription factors. Plant Biotechnology Journal, 13(4), 57889.

    Article  CAS  Google Scholar 

  • Podevin, N., Davies, H. V., Hartung, F., Nogue, F., & Casacuberta, J. M. (2013). Site directed nucleases: A paradigm shift in predictable, knowledgebased plant breeding. Trends in Biotechnology, 31(6), 37583.

    Article  CAS  Google Scholar 

  • Polstein, L. R., & Gersbach, C. A. (2015). A light inducible CRISPRCas9 system for control of endogenous gene activation. Nature Chemical Biology, 11(3), 198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purnhagen, K., Kok, E., Kleter, G., Schebesta, H., Visser, R., & Wesseler, J. (2018). The European Union Court’s advocate general’s opinion and new plant breeding techniques. Nature Biotechnology, 36, 573–575.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, M. U., Khan, A. Q., Rahmat, Z., Iqbal, M. A., & Zafar, Y. (2017). Genetics and genomics of cotton leaf curl disease, its viral causal agents and whitefly vector: A way forward to sustain cotton fiber security. Frontiers in Plant Science, 8, 1157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramessar, K., Capell, T., Twyman, R. M., Quemada, H., & Christou, P. (2008). Trace and traceability—a call for regulatory harmony. Nature Biotechnology, 26, 975–978.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Hernández, A. M., Gosalvez, B., Sempere, R. N., Burgos, L., Aranda, M. A., & Truniger, V. (2012). Melon RNA interference (RNAi) lines silenced for CmeIF4E show broad virus resistance. Molecular Plant Pathology, 13(7), 75563.

    Article  Google Scholar 

  • Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M. A., Zumstein, K., Garcha, J., Winte, S., Masson, H., Inagaki, S., & Federici, F. (2014). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type specific gene expression and function using tomato as a model. Plant Physiology, 166(2), 45569.

    Article  CAS  Google Scholar 

  • Schaeffer, S. M., & Nakata, P. A. (2015). CRISPR/Cas9mediatedgenetic editing and gene replacement in plants: Transitioning from lab to field. Plant Science, 240, 13042.

    Article  CAS  Google Scholar 

  • Schiml, S., Fauser, F., & Puchta, H. (2014). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. The Plant Journal, 80(6), 113950.

    Article  CAS  Google Scholar 

  • Schiml, S., Fauser, F., & Puchta, H. (2016). CRISPR/Casmediatedsitespecific mutagenesis in Arabidopsis thaliana using Cas9 nucleases and paired nickases. In Chromosome and genomic engineering in plants (pp. 111–122). New York: Humana Press.

    Google Scholar 

  • Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J. J., Qiu, J. L., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPRCas system. Nature Biotechnology, 31(8), 686.

    Article  CAS  PubMed  Google Scholar 

  • Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017). ARGOS8 variants generated by CRISPRCas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 20716.

    Article  CAS  Google Scholar 

  • Sikora, P., Chawade, A., Larsson, M., Olsson, J., & Olsson, O. (2011). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal ofPplant Genomics, 2011, 314829.

    Google Scholar 

  • Song, G., Jia, M., Chen, K., Kong, X., Khattak, B., Xie, C., Li, A., & Mao, L. (2016). CRISPR/Cas9: A powerful tool for crop genetic editing. The Crop Journal, 4(2), 7582.

    Article  Google Scholar 

  • Soyars, C. L., Peterson, B. A., Burr, C. A., & Nimchuk, Z. L. (2018). Cutting edge genetics: CRISPR/Cas9 editing of plant genomes. Plant and Cell Physiology, 59, 1608–1620.

    Article  CAS  PubMed  Google Scholar 

  • Soyk, S., Müller, N. A., Park, S. J., Schmalenbach, I., Jiang, K., Hayama, R., Zhang, L., Van Eck, J., JiménezGómez, J. M., & Lippman, Z. B. (2017). Variation in the flowering gene SELF PRUNING 5G promotes day neutrality and early yield in tomato. Nature Genetics, 49(1), 162.

    Article  CAS  PubMed  Google Scholar 

  • Sprink, T., Eriksson, D., Schiemann, J., & Hartung, F. (2016). Regulatory hurdles for genetic editing: Process vs. product based approaches in different regulatory contexts. Plant Cell Reports, 35, 1493506.

    Article  CAS  Google Scholar 

  • Steinert, J., Schiml, S., Fauser, F., & Puchta, H. (2015). Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. The Plant Journal, 84(6), 1295305.

    Article  CAS  Google Scholar 

  • Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J., & Mateo, J. L. (2015). CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 10(4), e0124633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J., & Russell, R. (2018). Kinetic basis for DNA target specificity of CRISPRCas12a. Molecular Cell, 71, 816–824.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subburaj, S., Chung, S. J., Lee, C., Ryu, S. M., Kim, D. H., Kim, J. S., Bae, S., & Lee, G. J. (2016). Site directed mutagenesis in Petunia× hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Reports, 35(7), 153544.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhang, X., Wu, C., He, Y., Ma, Y., Hou, H., Guo, X., Du, W., Zhao, Y., & Xia, L. (2016). Engineering herbicide resistant rice plants through CRISPR/Cas9mediated homologous recombination of acetolactate synthase. Molecular Plant, 9(4), 62831.

    Article  CAS  Google Scholar 

  • Svitashev, S., Schwartz, C., Lenderts, B., Young, J. K., & Cigan, A. M. (2016). Genetic editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nature Communications, 7, 13274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, S., Jiang, L., Gao, Q., Zhang, J., Zong, M., Zhang, H., Ren, Y., Guo, S., Gong, G., Liu, F., & Xu, Y. (2017). Efficient CRISPR/Cas9based gene knockout in watermelon. Plant Cell Reports, 36(3), 399406.

    Article  CAS  Google Scholar 

  • Tsai, S. Q., Wyvekens, N., Khayter, C., Foden, J. A., Thapar, V., Reyon, D., Goodwin, M. J., Aryee, M. J., & Joung, J. K. (2014). Dimeric CRISPR RNA guided FokI nucleases for highly specific genetic editing. Nature Biotechnology, 32(6), 569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueta, R., Abe, C., Watanabe, T., Sugano, S. S., Ishihara, R., Ezura, H., Osakabe, Y., & Osakabe, K. (2017). Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports, 7(1), 507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay, S. K., Kumar, J., Alok, A., & Tuli, R. (2013). RNA guided genetic editing for target gene mutations in wheat. G3: Genes, Genomes, Genetics, 3(12), 22338.

    Article  Google Scholar 

  • Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W., & Giovannoni, J. (2002). A MADSbox gene necessary for fruit ripening at the tomato ripening inhibitor (rin) locus. Science, 296(5566), 3436.

    Article  Google Scholar 

  • Waltz, E. (2015a). Nonbrowning GM apple cleared for market. Nature Biotechnology, 33, 326–327.

    Article  CAS  PubMed  Google Scholar 

  • Waltz, E. (2015b). USDA approves next generation GM potato. Nature Biotechnology, 33, 12–13.

    Article  CAS  PubMed  Google Scholar 

  • Waltz, E. (2016). CRISPR edited crops free to enter market, skip regulation. Nature Biotechnology, 34, 582.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. P., Xing, H. L., Dong, L., Zhang, H. Y., Han, C. Y., Wang, X. C., & Chen, Q. J. (2015a). Egg cell specific promoter controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 16(1), 144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Shen, L., Fu, Y., Yan, C., & Wang, K. (2015b). A simple CRISPR/Cas9 system for multiplex genetic editing in rice. Journal of Genetics and Genomics, 42(12), 7036.

    Article  Google Scholar 

  • Wang, Y., Liu, X., Ren, C., Zhong, G. Y., Yang, L., Li, S., & Liang, Z. (2016a). Identification of genomic sites for CRISPR/Cas9basedgenetic editing in the Vitis vinifera genome. BMC Plant Biology, 16(1), 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Wang, L., Tan, Q., Fan, Q., Zhu, H., Hong, Z., Zhang, Z., & Duanmu, D. (2016b). Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPRCas9. Frontiers in Plant Science, 7, 1333.

    PubMed  PubMed Central  Google Scholar 

  • Wang, X., Tu, M., Wang, D., Liu, J., Li, Y., Li, Z., Wang, Y., & Wang, X. (2018). CRISPR/Cas9mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 16(4), 84455.

    Article  CAS  Google Scholar 

  • Weeks, D. P., Spalding, M. H., & Yang, B. (2016). Use of designer nucleases for targeted gene and genetic editing in plants. Plant Biotechnology Journal, 14(2), 48395.

    Article  CAS  Google Scholar 

  • Wolt, J.D., Wang, K., Sashital, D., & Lawrence-Dill, C.J. (2016). Achieving plant CRISPR targeting that limits off-target effects. The plant genome, 9(3).

    Google Scholar 

  • Wolter, F., & Puchta, H. (2018). The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. The Plant Journal, 94(5), 76775.

    Article  CAS  Google Scholar 

  • Woo, J. W., Kim, J., Kwon, S. I., Corvalán, C., Cho, S. W., Kim, H., Kim, S. G., Kim, S. T., Choe, S., & Kim, J. S. (2015). DNA free genetic editing in plants with preassembled CRISPRCas9 ribonucleoproteins. Nature Biotechnology, 33(11), 1162.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, A., Cheng, Z., Kong, L., Zhu, Z., Lin, S., Gao, G., & Zhang, B. (2014). CasOT: A genome wide Cas9/gRNA off target searching tool. Bioinformatics, 30(8), 11802.

    Article  CAS  Google Scholar 

  • Xing, H. L., Dong, L., Wang, Z. P., Zhang, H. Y., Han, C. Y., Liu, B., Wang, X. C., & Chen, Q. J. (2014). A CRISPR/Cas9 toolkit for multiplex genetic editing in plants. BMC Plant Biology, 14(1), 327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, C., Park, S. J., Van Eck, J., & Lippman, Z. B. (2016). Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes and Development, 30(18), 204861.

    Article  Google Scholar 

  • Yang, J., Luo, D., Yang, B., Frommer, W. B., & Eom, J. S. (2018). SWEET 11 and 15 as key players in seed filling in rice. New Phytologist, 218(2), 60415.

    Article  CAS  Google Scholar 

  • Yau, Y. Y., & Stewart, C. N. (2013). Less is more: Strategies to remove marker genes from transgenic plants. BMC Biotechnology, 13(1), 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, K., Han, T., Liu, G., Chen, T., Wang, Y., Yu, A. Y., & Liu, Y. (2015). A geminivirus based guide RNA delivery system for CRISPR/Cas9 mediated plant genetic editing. Scientific Reports, 5, 14926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, K., Gao, C., & Qiu, J. L. (2017). Progress and prospects in plant genetic editing. Nature Plants, 3(8), 17107.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi, S. S., Mansoor, S., Ali, Z., Tashkandi, M., & Mahfouz, M. M. (2016). Engineering plants for geminivirus resistance with CRISPR/Cas9 system. Trends in Plant Science, 21(4), 27981.

    Article  CAS  Google Scholar 

  • Zalatan, J. G., Lee, M. E., Almeida, R., Gilbert, L. A., Whitehead, E. H., La Russa, M., Tsai, J. C., Weissman, J. S., Dueber, J. E., Qi, L. S., & Lim, W. A. (2015). Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell, 160(12), 33950.

    Google Scholar 

  • Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., Van Der Oost, J., Regev, A., & Koonin, E. V. (2015). Cpf1 is a single RNAguided endonuclease of a class 2 CRISPRCas system. Cell, 163(3), 75971.

    Article  CAS  Google Scholar 

  • Zhang, H., Zhang, J., Wei, P., Zhang, B., Gou, F., Feng, Z., Mao, Y., Yang, L., Zhang, H., Xu, N., & Zhu, J. K. (2014). The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 12(6), 797807.

    Article  CAS  Google Scholar 

  • Zhang, Z., Mao, Y., Ha, S., Liu, W., Botella, J. R., & Zhu, J. K. (2016). A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Reports, 35(7), 151933.

    Article  CAS  Google Scholar 

  • Zhang, Q., Xing, H. L., Wang, Z. P., Zhang, H. Y., Yang, F., Wang, X. C., & Chen, Q. J. (2018). Potential high frequency off target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Molecular Biology, 96(45), 44556.

    Google Scholar 

  • Zhao, D., Feng, X., Zhu, X., Wu, T., Zhang, X., & Bi, C. (2017). CRISPR/Cas9assisted gRNAfreeonestepgenetic editing with no sequence limitations and improved targeting efficiency. Scientific Reports, 7(1), 16624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, H., Liu, B., Weeks, D. P., Spalding, M. H., & Yang, B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research, 42(17), 1090314.

    Article  CAS  Google Scholar 

  • Zhou, X., Jacobs, T. B., Xue, L. J., Harding, S. A., & Tsai, C. J. (2015). Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4coumarate: CoA ligase specificity and redundancy. New Phytologist, 208(2), 298301.

    Article  CAS  Google Scholar 

  • Zhou, X., Zha, M., Huang, J., Li, L., Imran, M., & Zhang, C. (2017). StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. Journal of Experimental Botany, 68(5), 126581.

    Article  CAS  Google Scholar 

  • Zhou, J., Wang, G., & Liu, Z. (2018). Efficient genetic editing of wild strawberry genes, vector development and validation. Plant Biotechnology Journal, 16, 1868–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, V. (2019). CRISPR Applications in Plant Genetic Engineering and Biotechnology. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_19

Download citation

Publish with us

Policies and ethics