Skip to main content

Root Nodule Development in Model Versus Non-canonical Plants

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

Nitrogen-fixing symbiosis is the most successful metabolism-dependent mutualistic symbiosis on earth that influences global nitrogen cycles. Engineering and improvement of this symbiosis is the major avenue towards sustainable agriculture. Root nodule symbiosis (RNS) is restricted to a monophyletic group of angiosperm order. Collectively this group is called nitrogen-fixing symbiosis (NFS) clade. Tremendous multifariousness exists among the infection mechanism, nodule structure, and nitrogen fixation efficiency among nodules. We have gained significant knowledge about the molecular mechanism of RNS in last two decades, using model legumes Medicago truncatula and Lotus japonicus. In this chapter, we present the current status of model legumes used to unveil the molecular mechanisms behind the development of nodules and RNS. We further introduce non-canonical legume species that have been used to expand our understanding of the traits associated with RNS in plants. We have also highlighted the extraordinary variations which came up during the evolution of the RNS. This comparative approach will enable us to identify the variable genetic events that rendered NFS to the RNS clade. In turn, this knowledge will hopefully allow us to carefully engineer it in non-fixing crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ane, J. M., Kiss, G. B., Riely, B. K., Penmetsa, R. V., Oldroyd, G. E., Ayax, C., Levy, J., Debelle, F., Baek, J. M., Kalo, P., Rosenberg, C., Roe, B. A., Long, S. R., Denarie, J., & Cook, D. R. (2004). Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science, 303, 1364–1367.

    Article  CAS  PubMed  Google Scholar 

  • Arrighi, J.-F., Barre, A., Amor, B. B., Bersoult, A., Soriano, L. C., Mirabella, R., de Carvalho-Niebel, F., Journet, E.-P., Ghérardi, M., & Huguet, T. (2006). The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiology, 142, 265–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett, M. J., Toman, C. J., Fisher, R. F., & Long, S. R. (2004). A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proceedings of the National Academy of Sciences, 101, 16636–16641.

    Article  CAS  Google Scholar 

  • Benedito, V. A., Torres-Jerez, I., Murray, J. D., Andriankaja, A., Allen, S., Kakar, K., Wandrey, M., Verdier, J., Zuber, H., & Ott, T. (2008). A gene expression atlas of the model legume Medicago truncatula. The Plant Journal, 55, 504–513.

    Article  CAS  PubMed  Google Scholar 

  • Berrabah, F., Bourcy, M., Cayrel, A., Eschstruth, A., Mondy, S., Ratet, P., & Gourion, B. (2014). Growth conditions determine the DNF2 requirement for symbiosis. PLoS One, 9(3), e91866.

    Google Scholar 

  • Berrabah, F., Ratet, P., & Gourion, B. (2015). Multiple steps control immunity during the intracellular accommodation of rhizobia. Journal of Experimental Botany, 66(7), 1977–1985.

    Google Scholar 

  • Bonaldi, K., Gargani, D., Prin, Y., Fardoux, J., Gully, D., Nouwen, N., Goormachtig, S., & Giraud, E. (2011). Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium sp. strain ORS285: The nod-dependent versus the nod-independent symbiotic interaction. Molecular Plant-Microbe Interactions, 24, 1359–1371.

    Article  CAS  PubMed  Google Scholar 

  • Boogerd, F. C., & van Rossum, D. (1997). Nodulation of groundnut by Bradyrhizobium: A simple infection process by crack entry. FEMS Microbiology Reviews, 21, 5–27.

    Article  CAS  Google Scholar 

  • Bourcy, M., Brocard, L., Pislariu, C. I., Cosson, V., Mergaert, P., Tadege, M., et al. (2013). Medicago truncatula DNF 2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytologist, 197(4), 1250–1261.

    Google Scholar 

  • Breakspear, A., Liu, C., Roy, S., Stacey, N., Rogers, C., Trick, M., Morieri, G., Mysore, K. S., Wen, J., & Oldroyd, G. E. (2014). The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. The Plant Cell, 26(12), 4680–4701. https://doi.org/10.1105/tpc.114.133496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broghammer, A., Krusell, L., Blaise, M., Sauer, J., Sullivan, J. T., Maolanon, N., Vinther, M., Lorentzen, A., Madsen, E. B., & Jensen, K. J. (2012). Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences, 109, 13859–13864.

    Article  Google Scholar 

  • Cai, J., Zhang, L.-Y., Liu, W., Tian, Y., Xiong, J.-S., Wang, Y.-H., Li, R.-J., Li, H.-M., Wen, J., & Mysore, K. S. (2018). Role of the Nod factor hydrolase MtNFH1 in regulating Nod factor levels during rhizobial infection and in mature nodules of Medicago truncatula. The Plant Cell, 30(2), 397–414. https://doi.org/10.1105/tpc.17.00420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capela, D., Filipe, C., Bobik, C., Batut, J., & Bruand, C. (2006). Sinorhizobium meliloti differentiation during symbiosis with alfalfa: A transcriptomic dissection. Molecular Plant-Microbe Interactions, 19, 363–372.

    Article  CAS  PubMed  Google Scholar 

  • Capoen, W., Sun, J., Wysham, D., Otegui, M. S., Venkateshwaran, M., Hirsch, S., Miwa, H., Downie, J. A., Morris, R. J., & Ané, J.-M. (2011). Nuclear membranes control symbiotic calcium signaling of legumes. Proceedings of the National Academy of Sciences, 108, 14348–14353.

    Article  Google Scholar 

  • Cascales, E., & Christie, P. J. (2003). The versatile bacterial type IV secretion systems. Nature Reviews Microbiology, 1, 137.

    Article  CAS  PubMed  Google Scholar 

  • Chang, W.-S., Franck, W. L., Cytryn, E., Jeong, S., Joshi, T., Emerich, D. W., Sadowsky, M. J., Xu, D., & Stacey, G. (2007). An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. Molecular Plant-Microbe Interactions, 20, 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  • Charpentier, M., Sun, J., Martins, T. V., Radhakrishnan, G. V., Findlay, K., Soumpourou, E., Thouin, J., Véry, A.-A., Sanders, D., & Morris, R. J. (2016). Nuclear-localized cyclic nucleotide–gated channels mediate symbiotic calcium oscillations. Science, 352, 1102–1105.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, V. C., Loughlin, P. C., Gavrin, A., Chen, C., Brear, E. M., Day, D. A., & Smith, P. M. (2015). Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Molecular & Cellular Proteomics, 14, 1301–1322. https://doi.org/10.1074/mcp.M114.043166.

    Article  CAS  Google Scholar 

  • Couzigou, J. M., Zhukov, V., Mondy, S., El Heba, G. A., Cosson, V., Ellis, T. N., et al. (2012). NODULE ROOT and COCHLEATA maintain nodule development and are legume orthologs of Arabidopsis BLADE-ON-PETIOLE genes. The Plant Cell, 24(11), 4498–4510.

    Google Scholar 

  • Clúa, J., Roda, C., Zanetti, M. E., & Blanco, F. A. (2018). Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes, 9, 125.

    Article  CAS  PubMed Central  Google Scholar 

  • Couzigou, J. M., Mondy, S., Sahl, L., Gourion, B., & Ratet, P. (2013). To be or noot to be: Evolutionary tinkering for symbiotic organ identity. Plant Signaling & Behavior, 8(8), 4498–4510.

    Google Scholar 

  • Deakin, W. J., & Broughton, W. J. (2009). Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nature Reviews Microbiology, 7, 312.

    Article  CAS  PubMed  Google Scholar 

  • Den Camp, R. O., Streng, A., De Mita, S., Cao, Q., Polone, E., Liu, W., Ammiraju, J. S., Kudrna, D., Wing, R., & Untergasser, A. (2011). LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science, 331(6019), 909–912. https://doi.org/10.1126/science.1198181.

    Article  CAS  Google Scholar 

  • Doyle, J. J. (2011). Phylogenetic perspectives on the origins of nodulation. Molecular Plant-Microbe Interactions, 24, 1289–1295.

    Article  CAS  PubMed  Google Scholar 

  • Domonkos, Á., Kovács, S., Gombár, A., Kiss, E., Horváth, B., Kováts, G., et al. (2017). NAD1 controls defense-like responses in Medicago truncatula symbiotic nitrogen fixing nodules following rhizobial colonization in a BacA-independent manner. Genes, 8(12), 387.

    Google Scholar 

  • Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P., & Kiss, G. B. (2002). A receptor kinase gene regulating symbiotic nodule development. Nature, 417, 962.

    Article  CAS  PubMed  Google Scholar 

  • Fabre, S., Gully, D., Poitout, A., Patrel, D., Arrighi, J.-F., Giraud, E., Czernic, P., & Cartieaux, F. (2015). The Nod factor-independent nodulation in Aeschynomene evenia required the common plant-microbe symbiotic“toolkit”. Plant Physiology, 169, 2654–2664. https://doi.org/10.1104/pp.15.01134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas, A., Maróti, G., Dürgő, H., Györgypál, Z., Lima, R. M., Medzihradszky, K. F., Kereszt, A., Mergaert, P., & Kondorosi, É. (2014). Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proceedings of the National Academy of Sciences, 111, 5183–5188.

    Article  CAS  Google Scholar 

  • Fernández-López, M., Goormachtig, S., Gao, M., D’Haeze, W., Van Montagu, M., & Holsters, M. (1998). Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Proceedings of the National Academy of Sciences, 95, 12724–12728.

    Article  Google Scholar 

  • Filloux, A., Hachani, A., & Bleves, S. (2008). The bacterial type VI secretion machine: Yet another player for protein transport across membranes. Microbiology, 154, 1570–1583.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, J., Gaillard, P., Fellbaum, C. R., Subramanian, S., & Smith, S. (2018). Quantitative 3D imaging of cell level auxin and cytokinin response ratios in soybean roots and nodules. Plant, Cell & Environment, 41, 2080–2092.

    CAS  Google Scholar 

  • Flemetakis, E., Dimou, M., Cotzur, D., Efrose, R. C., Aivalakis, G., Colebatch, G., Udvardi, M., & Katinakis, P. (2003). A sucrose transporter, Lj SUT4, is up-regulated during Lotus japonicus nodule development. Journal of Experimental Botany, 54, 1789–1791.

    Article  CAS  PubMed  Google Scholar 

  • Franssen, H. J., Xiao, T. T., Kulikova, O., Wan, X., Bisseling, T., Scheres, B., & Heidstra, R. (2015). Root developmental programs shape the Medicago truncatula nodule meristem. Development, 142(17), 2941–2950.

    Google Scholar 

  • Gavrin, A., Kulikova, O., Bisseling, T., & Fedorova, E. E. (2017). Interface symbiotic membrane formation in root nodules of Medicago truncatula: The role of synaptotagmins MtSyt1, MtSyt2 and MtSyt3. Frontiers in Plant Science, 8, 201.

    Google Scholar 

  • Gazi, A. D., Sarris, P. F., Fadouloglou, V. E., Charova, S. N., Mathioudakis, N., Panopoulos, N. J., & Kokkinidis, M. (2012). Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiology, 12, 188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, P. (2004). Process of protein transport by the type III secretion system. Microbiology and Molecular Biology Reviews, 68, 771–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson, K. E., Kobayashi, H., & Walker, G. C. (2008). Molecular determinants of a symbiotic chronic infection. Annual Review of Genetics, 42, 413–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J.-C., Jaubert, M., Simon, D., Cartieaux, F., & Prin, Y. (2007). Legumes symbioses: Absence of nod genes in photosynthetic bradyrhizobia. Science, 316, 1307–1312.

    Article  PubMed  Google Scholar 

  • Gleason, C., Chaudhuri, S., Yang, T., Muñoz, A., Poovaiah, B., & Oldroyd, G. E. (2006). Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature, 441, 1149.

    Article  CAS  PubMed  Google Scholar 

  • Golinowski, W., Kopcińska, J., & Borucki, W. (1987). The morphogenesis of lupine root nodules during infection by Rhizobium lupini. Acta Societatis Botanicorum Poloniae, 56, 687.

    Article  Google Scholar 

  • González-Sama, A., Lucas, M. M., De Felipe, M. R., & Pueyo, J. J. (2004). An unusual infection mechanism and nodule morphogenesis in white lupin (Lupinus albus). New Phytologist, 163, 371–380.

    Article  Google Scholar 

  • Goodchild, D., & Bergersen, F. (1966). Electron microscopy of the infection and subsequent development of soybean nodule cells. Journal of Bacteriology, 92, 204–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griesmann, M., Chang, Y., Liu, X., Song, Y., Haberer, G., Crook, M. B., Billault-Penneteau, B., Lauressergues, D., Keller, J., & Imanishi, L. (2018). Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science, 361, eaat1743.

    Article  CAS  PubMed  Google Scholar 

  • Groth, M., Takeda, N., Perry, J., Uchida, H., Dräxl, S., Brachmann, A., Sato, S., Tabata, S., Kawaguchi, M., & Wang, T. L. (2010). NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. The Plant Cell, 22(7), 2509–2526. https://doi.org/10.1105/tpc.109.069807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrbach, V., Remblière, C., Gough, C., & Bensmihen, S. (2014). Lateral root formation and patterning in Medicago truncatula. Journal of Plant Physiology, 171, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Herridge, D., & Rose, I. (2000). Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Research, 65, 229–248.

    Article  Google Scholar 

  • Hirsch, A. M. (1992). Developmental biology of legume nodulation. New Phytologist, 122, 211–237.

    Article  Google Scholar 

  • Hirsch, A. M., Larue, T. A., & Doyle, J. (1997). Is the legume nodule a modified root or stem or an organ sui generis? Critical Reviews in Plant Sciences, 16, 361–392.

    Article  Google Scholar 

  • Horvath, B., Domonkos, A., Kereszt, A., Szucs, A., Abraham, E., Ayaydin, F., Boka, K., Chen, Y., Chen, R., Murray, J. D., Udvardi, M. K., Kondorosi, E., & Kalo, P. (2015). Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proceedings of the National Academy of Sciences of the United States of America, 112, 15232–15237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubber, A., Vergunst, A. C., Sullivan, J. T., Hooykaas, P. J., & Ronson, C. W. (2004). Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Molecular Microbiology, 54, 561–574.

    Article  CAS  PubMed  Google Scholar 

  • Kaló, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R. M., Hirsch, S., Jakab, J., Sims, S., Long, S. R., & Rogers, J. (2005). Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science, 308, 1786–1789.

    Article  CAS  PubMed  Google Scholar 

  • Kambara, K., Ardissone, S., Kobayashi, H., Saad, M. M., Schumpp, O., Broughton, W. J., & Deakin, W. J. (2009). Rhizobia utilize pathogen-like effector proteins during symbiosis. Molecular Microbiology, 71, 92–106.

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran, R., Ramachandran, V., Seaman, J., East, A., Mouhsine, B., Mauchline, T., Prell, J., Skeffington, A., & Poole, P. (2009). Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. Journal of Bacteriology, 191, 4002–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, J., Imperial, J., Ruiz-Argüeso, T., Privet, K., Lima, O., Michon-Coudouel, S., Biget, M., Salmon, A., Aïnouche, A., & Cabello-Hurtado, F. (2018). RNA sequencing and analysis of three Lupinus nodulomes provide new insights into specific host-symbiont relationships with compatible and incompatible Bradyrhizobium strains. Plant Science, 266, 102–116.

    Article  CAS  PubMed  Google Scholar 

  • Kereszt, A., Mergaert, P., Maróti, G., & Kondorosi, É. (2011). Innate immunity effectors and virulence factors in symbiosis. Current Opinion in Microbiology, 14, 76–81.

    Article  CAS  PubMed  Google Scholar 

  • Kiers, E. T., Rousseau, R. A., West, S. A., & Denison, R. F. (2003). Host sanctions and the legume–rhizobium mutualism. Nature, 425, 78.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., Chen, Y., Xi, J., Waters, C., Chen, R., & Wang, D. (2015). An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 112, 15238–15243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krusell, L., Krause, K., Ott, T., Desbrosses, G., Krämer, U., Sato, S., Nakamura, Y., Tabata, S., James, E. K., & Sandal, N. (2005). The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. The Plant Cell, 17, 1625–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryvoruchko, I. S., Sinharoy, S., Torres-Jerez, I., Sosso, D., Pislariu, C. I., Guan, D., Murray, J. D., Benedito, V. A., Frommer, W. B., & Udvardi, M. K. (2016). MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula root nodules. Plant Physiology, 171, 554–565. https://doi.org/10.1104/pp.15.01910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryvoruchko, I. S., Routray, P., Senjuti, S., Torres-Jerez, I., Tejada-Jiménez, M., Finney, L. A., Nakashima, J., Pislariu, C. I., Benedito, V. A., & Gonzalez-Guerrero, M. (2018). An iron-activated citrate transporter, MtMATE67, is required for symbiotic nitrogen fixation. Plant Physiology, 176(3), 2315–2329. https://doi.org/10.1104/pp.17.01538.

    Article  CAS  PubMed  Google Scholar 

  • Kuldau, G. A., De Vos, G., Owen, J., McCaffrey, G., & Zambryski, P. (1990). The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Molecular and General Genetics MGG, 221, 256–266.

    Article  CAS  PubMed  Google Scholar 

  • Lavin, M., Pennington, R. T., Klitgaard, B. B., Sprent, J. I., de Lima, H. C., & Gasson, P. E. (2001). The dalbergioid legumes (Fabaceae): Delimitation of a pantropical monophyletic clade. American Journal of Botany, 88, 503–533.

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, B., Timmers, T., Mbengue, M., Moreau, S., Hervé, C., Tóth, K., Bittencourt-Silvestre, J., Klaus, D., Deslandes, L., & Godiard, L. (2010). A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proceedings of the National Academy of Sciences, 107, 2343–2348.

    Article  Google Scholar 

  • Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.-P., Ané, J.-M., Lauber, E., & Bisseling, T. (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science, 303, 1361–1364.

    Article  CAS  PubMed  Google Scholar 

  • Liang, P., Stratil, T. F., Popp, C., Marín, M., Folgmann, J., Mysore, K. S., Wen, J., & Ott, T. (2018). Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proceedings of the National Academy of Sciences, 115, 5289–5294.

    Article  CAS  Google Scholar 

  • Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T., & Geurts, R. (2003). LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 302, 630–633.

    Article  CAS  PubMed  Google Scholar 

  • Limpens, E., Mirabella, R., Fedorova, E., Franken, C., Franssen, H., Bisseling, T., & Geurts, R. (2005). Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proceedings of the National Academy of Sciences, 102, 10375–10380.

    Article  CAS  Google Scholar 

  • Limpens, E., Ivanov, S., van Esse, W., Voets, G., Fedorova, E., & Bisseling, T. (2009). Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. The Plant Cell, 21, 2811–2828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindeberg, M., Myers, C. R., Collmer, A., & Schneider, D. J. (2008). Roadmap to new virulence determinants in Pseudomonas syringae: Insights from comparative genomics and genome organization. Molecular Plant-Microbe Interactions, 21(6), 685–700.

    Google Scholar 

  • Łotocka, B., Kopcińska, J., Górecka, M., & Golinowski, W. (2000). Formation and abortion of root nodule primordia in Lupinus luteus L. Acta Biologica Cracoviensia Series Botanica, 42, 87–102.

    Google Scholar 

  • Łotocka, B., Kopcińska, J., & Skalniak, M. (2012). The meristem in indeterminate root nodules of Faboideae. Symbiosis, 58, 63–72.

    Article  PubMed  Google Scholar 

  • Madsen, E. B., Madsen, L. H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., & Sandal, N. (2003). A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature, 425, 637.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, L. H., Tirichine, L., Jurkiewicz, A., Sullivan, J. T., Heckmann, A. B., Bek, A. S., Ronson, C. W., James, E. K., & Stougaard, J. (2010). The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nature Communications, 1, 10.

    Article  CAS  PubMed  Google Scholar 

  • Magne, K., George, J., Berbel Tornero, A., Broquet, B., Madueño, F., Andersen, S. U., & Ratet, P. (2018a). Lotus japonicus NOOT-BOP-COCH-LIKE 1 is essential for nodule, nectary, leaf and flower development. The Plant Journal, 94, 880–894.

    Article  CAS  PubMed  Google Scholar 

  • Magne, K., Couzigou, J.-M., Schiessl, K., George, J., Zhukov, V., Sahl, L., Boyer, F., Iantcheva, A., Mysore, K. S., & Wen, J. (2018b). MtNODULE ROOT1 and MtNODULE ROOT2 are essential for indeterminate nodule identity. Plant Physiology, 178(1), 295–316. https://doi.org/10.1104/pp.18.00610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh, J. F., Rakocevic, A., Mitra, R. M., Brocard, L., Sun, J., Eschstruth, A., Long, S. R., Schultze, M., Ratet, P., & Oldroyd, G. E. (2007). Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiology, 144, 324–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masson-Boivin, C., Giraud, E., Perret, X., & Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends in Microbiology, 17, 458–466.

    Article  CAS  PubMed  Google Scholar 

  • Mathesius, U., Schlaman, H. R., Spaink, H. P., Of Sautter, C., Rolfe, B. G., & Djordjevic, M. A. (1998). Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. The Plant Journal, 14, 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Meckfessel, M. H., Blancaflor, E. B., Plunkett, M., Dong, Q., & Dickstein, R. (2012). Multiple domains in MtENOD8 protein including the signal peptide target it to the symbiosome. Plant Physiology, 159, 299–310. https://doi.org/10.1104/pp.111.191403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergaert, P., Nikovics, K., Kelemen, Z., Maunoury, N., Vaubert, D., Kondorosi, A., & Kondorosi, E. (2003). A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiology, 132, 161–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergaert, P., Uchiumi, T., Alunni, B., Evanno, G., Cheron, A., Catrice, O., Mausset, A.-E., Barloy-Hubler, F., Galibert, F., & Kondorosi, A. (2006). Eukaryotic control on bacterial cell cycle and differentiation in the rhizobium–legume symbiosis. Proceedings of the National Academy of Sciences, 103, 5230–5235.

    Article  CAS  Google Scholar 

  • Messinese, E., Mun, J.-H., Yeun, L. H., Jayaraman, D., Rougé, P., Barre, A., Lougnon, G., Schornack, S., Bono, J.-J., & Cook, D. R. (2007). A novel nuclear protein interacts with the symbiotic DMI3 calcium-and calmodulin-dependent protein kinase of Medicago truncatula. Molecular Plant-Microbe Interactions, 20, 912–921.

    Article  CAS  PubMed  Google Scholar 

  • Mitra, R. M., Gleason, C. A., Edwards, A., Hadfield, J., Downie, J. A., Oldroyd, G. E., & Long, S. R. (2004). A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proceedings of the National Academy of Sciences, 101, 4701–4705.

    Article  CAS  Google Scholar 

  • Mitsch, M. J., Cowie, A., & Finan, T. M. (2017). Succinate transport is not essential for symbiotic nitrogen fixation by Sinorhizobium meliloti nor Rhizobium leguminosarum. Applied and Environmental Microbiology:AEM, 84, 01561–01517.

    Article  Google Scholar 

  • Miwa, H., & Okazaki, S. (2017). How effectors promote beneficial interactions. Current Opinion in Plant Biology, 38, 148–154.

    Article  CAS  PubMed  Google Scholar 

  • Montiel, J., Downie, J. A., Farkas, A., Bihari, P., Herczeg, R., Bálint, B., Mergaert, P., Kereszt, A., & Kondorosi, É. (2017). Morphotype of bacteroids in different legumes correlates with the number and type of symbiotic NCR peptides. Proceedings of the National Academy of Sciences, 114, 5041–5046. https://doi.org/10.1073/pnas.1704217114.

    Article  CAS  Google Scholar 

  • Mun, T., Bachmann, A., Gupta, V., Stougaard, J., & Andersen, S. U. (2016). Lotus base: An integrated information portal for the model legume Lotus japonicus. Scientific Reports, 6, 39447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami, E., Cheng, J., Gysel, K., Bozsoki, Z., Kawaharada, Y., Hjuler, C. T., Sørensen, K. K., Tao, K., Kelly, S., & Venice, F. (2018). Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. eLife, 7, e33506.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray, J. D., Karas, B. J., Sato, S., Tabata, S., Amyot, L., & Szczyglowski, K. (2007). A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science, 315, 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Naisbitt, T., James, E., & Sprent, J. (1992). The evolutionary significance of the legume genus Chamaecrista, as determined by nodule structure. New Phytologist, 122, 487–492.

    Article  Google Scholar 

  • Ndoye, I., De Billy, F., Vasse, J., Dreyfus, B., & Truchet, G. (1994). Root nodulation of Sesbania rostrata. Journal of Bacteriology, 176, 1060–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, M. S., & Sadowsky, M. J. (2015). Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Frontiers in Plant Science, 6, 491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, M. S., Chun, C. L., & Sadowsky, M. J. (2017). Type IV effector proteins involved in the Medicago-Sinorhizobium symbiosis. Molecular Plant-Microbe Interactions, 30, 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Ng, J. L. P., Hassan, S., Truong, T. T., Hocart, C. H., Laffont, C., Frugier, F., & Mathesius, U. (2015). Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the Medicago truncatula cytokinin perception mutant cre1. The Plant Cell, 27, 2210–2226. https://doi.org/10.1105/tpc.15.00231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldroyd, G. E., & Geurts, R. (2001). Medicago truncatula, going where no plant has gone before. Trends in Plant Science, 6(12), 552–554.

    Google Scholar 

  • Okazaki, S., Kaneko, T., Sato, S., & Saeki, K. (2013). Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proceedings of the National Academy of Sciences, 110, 17131–17136. https://doi.org/10.1073/pnas.1302360110.

    Article  CAS  Google Scholar 

  • Osipova, M. A., Dolgikh, E. A., & Lutova, L. A. (2011). Peculiarities of meristem-specific WOX5 gene expression during nodule organogenesis in legumes. Russian Journal of Developmental Biology, 42(4), 226.

    Google Scholar 

  • Osipova, M. A., Mortier, V., Demchenko, K. N., Tsyganov, V. E., Tikhonovich, I. A., Lutova, L. A., et al. (2012). WUSCHEL-RELATED HOMEOBOX5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation. Plant Physiology, 158(3), 1329–1341.

    Google Scholar 

  • Oldroyd, G. E. (2013). Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 11, 252.

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd, G. E., & Downie, J. A. (2006). Nuclear calcium changes at the core of symbiosis signalling. Current Opinion in Plant Biology, 9, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd, G. E., Murray, J. D., Poole, P. S., & Downie, J. A. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, 45, 119–144.

    Article  CAS  PubMed  Google Scholar 

  • Oono, R., Schmitt, I., Sprent, J. I., & Denison, R. F. (2010). Multiple evolutionary origins of legume traits leading to extreme rhizobial differentiation. New Phytologist, 187, 508–520.

    Article  CAS  Google Scholar 

  • Pahua, V., Stokes, P., Hollowell, A., Regus, J., Gano-Cohen, K., Wendlandt, C., Quides, K., Lyu, J., & Sachs, J. (2018). Fitness variation among host species and the paradox of ineffective rhizobia. Journal of Evolutionary Biology, 31, 599–610.

    Article  CAS  PubMed  Google Scholar 

  • Panter, S., Thomson, R., De Bruxelles, G., Laver, D., Trevaskis, B., & Udvardi, M. (2000). Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Molecular Plant-Microbe Interactions, 13, 325–333.

    Article  CAS  PubMed  Google Scholar 

  • Penterman, J., Abo, R. P., De Nisco, N. J., Arnold, M. F., Longhi, R., Zanda, M., & Walker, G. C. (2014). Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proceedings of the National Academy of Sciences, 111, 3561–3566.

    Article  CAS  Google Scholar 

  • Pii, Y., Astegno, A., Peroni, E., Zaccardelli, M., Pandolfini, T., & Crimi, M. (2009). The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Molecular Plant-Microbe Interactions, 22, 1577–1587.

    Article  CAS  PubMed  Google Scholar 

  • Pislariu, C. I., Murray, J., Wen, J., Cosson, V., Muni, R. R. D., Wang, M., Benedito, V., Andriankaja, A., Cheng, X., & Jerez, I. T. (2012). A Medicago truncatula tobacco-retrotransposon (Tnt1)-insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation. Plant Physiology, 159(4), 1686–1699. https://doi.org/10.1104/pp.112.197061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plet, J., Wasson, A., Ariel, F., Le Signor, C., Baker, D., Mathesius, U., Crespi, M., & Frugier, F. (2011). MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. The Plant Journal, 65, 622–633.

    Article  CAS  PubMed  Google Scholar 

  • Prell, J., White, J., Bourdes, A., Bunnewell, S., Bongaerts, R., & Poole, P. (2009). Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proceedings of the National Academy of Sciences, 106, 12477–12482.

    Article  Google Scholar 

  • Radutoiu, S., Madsen, L. H., Madsen, E. B., Felle, H. H., Umehara, Y., Grønlund, M., Sato, S., Nakamura, Y., Tabata, S., & Sandal, N. (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 425, 585.

    Article  CAS  PubMed  Google Scholar 

  • Ren, G. (2018). The evolution of determinate and indeterminate nodules within the Papilionoideae subfamily. Ph.D thesis. Wageningen: Wageningen University.

    Google Scholar 

  • Ried, M. K., Antolín-Llovera, M., & Parniske, M. (2014). Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases. eLife, 3, e03891.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riely, B. K., Ane, J. M., Penmetsa, R. V., & Cook, D. R. (2004). Genetic and genomic analysis in model legumes bring nod-factor signaling to center stage. Current Opinion in Plant Biology, 7(4), 408–413.

    Google Scholar 

  • Robertson, J. G., & Lyttleton, P. (1984). Division of peribacteroid membranes in root nodules of white clover. Journal of Cell Science, 69, 147–157.

    CAS  PubMed  Google Scholar 

  • Roth, L., & Stacey, G. (1989). Bacterium release into host cells of nitrogen-fixing soybean nodules: The symbiosome membrane comes from three sources. European Journal of Cell Biology, 49, 13–23.

    CAS  PubMed  Google Scholar 

  • Roux, B., Rodde, N., Jardinaud, M. F., Timmers, T., Sauviac, L., Cottret, L., et al. (2014). An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. The Plant Journal, 77(6), 817–837.

    Google Scholar 

  • Saalbach, G., Erik, P., & Wienkoop, S. (2002). Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes. Proteomics, 2, 325–337.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., & Weisbeek, P. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99, 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Saha, S., Dutta, A., Bhattacharya, A., & DasGupta, M. (2014). Intracellular catalytic domain of Symbiosis Receptor Kinase (SYMRK) hyperactivates spontaneous nodulation in absence of rhizobia. Plant Physiology, 166, 1699–1708. https://doi.org/10.1104/pp.114.250084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauser, L., Roussis, A., Stiller, J., & Stougaard, J. (1999). A plant regulator controlling development of symbiotic root nodules. Nature, 402, 191.

    Article  CAS  PubMed  Google Scholar 

  • Shabab, M., Arnold, M. F., Penterman, J., Wommack, A. J., Bocker, H. T., Price, P. A., Griffitts, J. S., Nolan, E. M., & Walker, G. C. (2016). Disulfide cross-linking influences symbiotic activities of nodule peptide NCR247. Proceedings of the National Academy of Sciences, 113, 10157–10162.

    Article  CAS  Google Scholar 

  • Singh, S., Katzer, K., Lambert, J., Cerri, M., & Parniske, M. (2014). CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host & Microbe, 15, 139–152.

    Article  CAS  Google Scholar 

  • Sinharoy, S., Torres-Jerez, I., Bandyopadhyay, K., Kereszt, A., Pislariu, C. I., Nakashima, J., et al. (2013). The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. The Plant Cell, 25(9), 3584–3601.

    Google Scholar 

  • Skorpil, P., Saad, M. M., Boukli, N. M., Kobayashi, H., Ares-Orpel, F., Broughton, W. J., & Deakin, W. J. (2005). NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii. Molecular Microbiology, 57, 1304–1317.

    Article  CAS  PubMed  Google Scholar 

  • Smit, P., Raedts, J., Portyanko, V., Debellé, F., Gough, C., Bisseling, T., & Geurts, R. (2005). NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 308, 1789–1791.

    Article  CAS  PubMed  Google Scholar 

  • Smit, P., Limpens, E., Geurts, R., Fedorova, E., Dolgikh, E., Gough, C., & Bisseling, T. (2007). Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiology, 145, 183–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyano, T., Kouchi, H., Hirota, A., & Hayashi, M. (2013). Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genetics, 9, e1003352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soyano, T., Hirakawa, H., Sato, S., Hayashi, M., & Kawaguchi, M. (2014). NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proceedings of the National Academy of Sciences, 111, 14607–14612.

    Article  CAS  Google Scholar 

  • Sprent, J. I. (2007). Evolving ideas of legume evolution and diversity: A taxonomic perspective on the occurrence of nodulation. New Phytologist, 174, 11–25.

    Article  CAS  Google Scholar 

  • Sprent, J. I., & James, E. K. (2007). Legume evolution: Where do nodules and mycorrhizas fit in? Plant Physiology, 144, 575–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., & Szczyglowski, K. (2002). A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature, 417, 959.

    Article  CAS  PubMed  Google Scholar 

  • Sugawara, M., Epstein, B., Badgley, B. D., Unno, T., Xu, L., Reese, J., Gyaneshwar, P., Denny, R., Mudge, J., & Bharti, A. K. (2013). Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biology, 14, R17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzaki, T., Yano, K., Ito, M., Umehara, Y., Suganuma, N., & Kawaguchi, M. (2012). Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development, 139, 3997–4006.

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff, S., Hocher, V., & Gherbi, H. (2014). Actinorhizal root nodule symbioses: What is signalling telling on the origins of nodulation? Current Opinion in Plant Biology, 20, 11–18.

    Article  PubMed  Google Scholar 

  • Tajima, R., Abe, J., Lee, O. N., Morita, S., & Lux, A. (2008). Developmental changes in peanut root structure during root growth and root-structure modification by nodulation. Annals of Botany, 101, 491–499.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takanashi, K., Sugiyama, A., & Yazaki, K. (2011). Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta, 234, 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Tampakaki, A. P. (2014). Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Frontiers in Plant Science, 5, 114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, C., Robson, A., Kuo, J., & Dilworth, M. (1993). Anatomical and ultrastructural observations on infection of Lupinus angustifolius L. by Bradyrhizobium sp. Journal of Computer Assisted Microscopy, 5, 47–47.

    Google Scholar 

  • Tang, F., Yang, S., Liu, J., & Zhu, H. (2016). Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein, but not the one previously reported. Plant Physiology, 170(1), 26–32. https://doi.org/10.1104/pp.15.01661.

    Article  CAS  PubMed  Google Scholar 

  • Tirichine, L., Imaizumi-Anraku, H., Yoshida, S., Murakami, Y., Madsen, L. H., Miwa, H., Nakagawa, T., Sandal, N., Albrektsen, A. S., & Kawaguchi, M. (2006). Deregulation of a Ca 2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature, 441, 1153.

    Article  CAS  PubMed  Google Scholar 

  • Tirichine, L., Sandal, N., Madsen, L. H., Radutoiu, S., Albrektsen, A. S., Sato, S., Asamizu, E., Tabata, S., & Stougaard, J. (2007). A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science, 315, 104–107.

    Article  CAS  PubMed  Google Scholar 

  • Turgeon, B. G., & Bauer, W. D. (1982). Early events in the infection of soybean by Rhizobium japonicum. Time course and cytology of the initial infection process. Canadian Journal of Botany, 60, 152–161.

    Article  Google Scholar 

  • Udvardi, M., & Poole, P. S. (2013). Transport and metabolism in legume-rhizobia symbioses. Annual Review of Plant Biology, 64, 781–805.

    Article  CAS  PubMed  Google Scholar 

  • Van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., & Tiricz, H. (2010). Plant peptides govern terminal differentiation of bacteria in symbiosis. Science, 327, 1122–1126.

    Article  CAS  PubMed  Google Scholar 

  • van Noorden, G. E., Kerim, T., Goffard, N., Wiblin, R., Pellerone, F. I., Rolfe, B. G., & Mathesius, U. (2007). Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiology, 144, 1115–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Velzen, R., Holmer, R., Bu, F., Rutten, L., van Zeijl, A., Liu, W., Santuari, L., Cao, Q., Sharma, T., & Shen, D. (2018). Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proceedings of the National Academy of Sciences, 115(20), E4700–E4709. https://doi.org/10.1073/pnas.1721395115.

    Article  CAS  Google Scholar 

  • Verdier, J., Torres-Jerez, I., Wang, M., Andriankaja, A., Allen, S. N., He, J., Tang, Y., Murray, J. D., & Udvardi, M. K. (2013). Establishment of the Lotus japonicus Gene Expression Atlas (LjGEA) and its use to explore legume seed maturation. The Plant Journal, 74, 351–362.

    Article  CAS  PubMed  Google Scholar 

  • Vernié, T., Kim, J., Frances, L., Ding, Y., Sun, J., Guan, D., Niebel, A., Gifford, M. L., de Carvalho-Niebel, F., & Oldroyd, G. E. (2015). The NIN transcription factor coordinates diverse nodulation programs in different tissues of the Medicago truncatula root. The Plant Cell, 27, 3410–3424. https://doi.org/10.1105/tpc.15.00461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Yu, H., Luo, L., Duan, L., Cai, L., He, X., et al. (2016). NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. New Phytologist, 212(1), 176–191.

    Google Scholar 

  • Wang, D., Griffitts, J., Starker, C., Fedorova, E., Limpens, E., Ivanov, S., Bisseling, T., & Long, S. (2010). A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science, 327, 1126–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Yang, S., Liu, J., Terecskei, K., Abraham, E., Gombar, A., Domonkos, A., Szucs, A., Kormoczi, P., Wang, T., Fodor, L., Mao, L., Fei, Z., Kondorosi, E., Kalo, P., Kereszt, A., & Zhu, H. (2017). Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 114, 6854–6859.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasson, A. P., Pellerone, F. I., & Mathesius, U. (2006). Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. The Plant Cell, 18, 1617–1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weerasinghe, R. R., Bird, D. M., & Allen, N. S. (2005). Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proceedings of the National Academy of Sciences, 102, 3147–3152.

    Article  CAS  Google Scholar 

  • Werner, G. D., Cornwell, W. K., Sprent, J. I., Kattge, J., & Kiers, E. T. (2014). A single evolutionary innovation drives the deep evolution of symbiotic N 2-fixation in angiosperms. Nature Communications, 5, 4087.

    Article  CAS  PubMed  Google Scholar 

  • Wienkoop, S., & Saalbach, G. (2003). Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiology, 131, 1080–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, T. T., Schilderink, S., Moling, S., Deinum, E. E., Kondorosi, E., Franssen, H., Kulikova, O., Niebel, A., & Bisseling, T. (2014). Fate map of Medicago truncatula root nodules. Development, 141, 3517–3528.

    Article  CAS  PubMed  Google Scholar 

  • Xie, F., Murray, J. D., Kim, J., Heckmann, A. B., Edwards, A., Oldroyd, G. E., & Downie, J. A. (2012). Legume pectate lyase required for root infection by rhizobia. Proceedings of the National Academy of Sciences, 109, 633–638.

    Article  Google Scholar 

  • Xin, D.-W., Liao, S., Xie, Z.-P., Hann, D. R., Steinle, L., Boller, T., & Staehelin, C. (2012). Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathogens, 8, e1002707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, S., Tang, F., Gao, M., Krishnan, H. B., & Zhu, H. (2010). R gene-controlled host specificity in the legume–rhizobia symbiosis. Proceedings of the National Academy of Sciences, 107, 18735–18740. https://doi.org/10.1073/pnas.1011957107.

    Article  Google Scholar 

  • Yang, S., Wang, Q., Fedorova, E., Liu, J., Qin, Q., Zheng, Q., Price, P. A., Pan, H., Wang, D., Griffitts, J. S., Bisseling, T., & Zhu, H. (2017). Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proc Natl Acad Sci U S A., 114, 6848–6853.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yano, K., Yoshida, S., Müller, J., Singh, S., Banba, M., Vickers, K., Markmann, K., White, C., Schuller, B., & Sato, S. (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences, 105, 20540–20545.

    Article  Google Scholar 

  • Yoro, E., Suzaki, T., Toyokura, K., Miyazawa, H., Fukaki, H., & Kawaguchi, M. (2014). A positive regulator of nodule organogenesis, NODULE INCEPTION, acts as a negative regulator of rhizobial infection in Lotus japonicus. Plant Physiology, 165, 747–758. https://doi.org/10.1104/pp.113.233379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zupan, J. R., & Zambryski, P. (1995). Transfer of T-DNA from agrobacterium to the plant cell. Plant Physiology, 107, 1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senjuti Sinharoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raul, B., Kryvoruchko, I., Benedito, V.A., Bandyopadhyay, K., Sinharoy, S. (2019). Root Nodule Development in Model Versus Non-canonical Plants. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_18

Download citation

Publish with us

Policies and ethics