Skip to main content

Nanotechnological Interventions for Improving Plant Health and Productivity

  • Chapter
  • First Online:

Abstract

Green revolution was responsible for ushering in a significant enhancement in crop productivity. It turned agriculture in India from a household occupation to an industrial system. This phase of rapid industrialization was brought about by the use of improved crop varieties, modern methods of cultivation and use of pesticides and herbicides. However, uncontrolled and excessive use of synthetic growth enhancers, pesticides and fungicide chemicals, has given rise to problems related with soil health, sustainability of productivity, environment stability and health etc. As a result, novel alternative approaches utilizing environmentally benign bio-fertilizers/bio-pesticides, as substitutes to harmful agro-chemicals, came into use so as to ensure human health and environment safety. In more recent times, population explosion and climate changes due to global warming have put additional strain on agricultural scientists to grow sufficient food from less arable land. Therefore, the present era focuses on innovative technologies which are oriented towards addressing the current challenges of sustainability, food safety and security and environment health. Researchers all over the world are exploring the feasibility of various innovative approaches, including nano-technological interventions, for improvement in agricultural sector. State-of-art research has identified the potential of highly innovative nano-material applications in food production. Nanotechnology, though not a recent concept, offers a diverse array of conceptual applications in the field of agriculture aimed at improving plant health and productivity. Nano-based products like nano-fertilizers, nano-diagnostics, nano-fertigation products and nano-pesticides, etc. offer multifaceted advantage over their macro-chemical counterparts. Nano-fertilizers and fertigation based products intend to optimize nutrient use by crops through exploiting properties unique to nanoparticles. Their application is more effective and at lower concentrations than the huge amounts of chemical fertilizers which are responsible for soil degradation and contribute to pollution of surface and underground water resources. The use of smart delivery system enables nutrient management with minimal nutrient losses and maximal yield optimization. Additionally, nano-based smart sensors are useful in precision farming thus enabling maximum productivity from crops while reducing the input costs incurred on excessive nitrogen, phosphorus and potassium fertilizers, irrigation, etc., through rigorous monitoring of physical growth variables and regulated release mechanisms. Moreover, nano-sensors and nano-biosensors are useful for monitoring of soil pH, and soil composition parameters. Other interesting areas of scientific investigations are genetic manipulation of plants through nano-based gene delivery systems and enhancing the nutraceutical value of crops through nano-biofortification. Despite the huge amount of patents and published data on the numerous benefits of nanotechnology in farming sector, this technology has not yet been exploited to its fullest potential. However, it is apparent that nanotechnology marks a new horizon and is a promising technology for revolutionizing modern agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Elsalam K. A. & Alghuthaymi, M. A. (2015). Nanobiofungicides: are they the Next-Generation of Fungicides? Journal of Nanotechnology and Materials Science, 2(2), 38–40.

    Article  Google Scholar 

  • Agrios, G. N. (2005). Plant pathology. San Diego: Elsevier Academic Press.

    Google Scholar 

  • Aktar, W., Sengupta, D., & Chowdhury, A. (2009). Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Androvitsaneas, P., Young, A. B., Schneider, C., Maier, S., Kamp, M., Höfling, S., & Oulton, R. (2016). Charged quantum dot micro-pillar system for deterministic light-matter interactions. Physical Review B, 93(24), 241409.

    Google Scholar 

  • Badran, A., & Savin, I. (2018). Effect of nano-fertilizer on seed germination and first stages of bitter almond seedlings’ growth under saline conditions. BioNanoScience, 8, 1–10.

    Article  Google Scholar 

  • Bakalova, R., Ohba, H., Zhelev, Z., Nagase, T., Jose, R., Ishikawa, M., & Baba, Y. (2004). Quantum dot anti-CD conjugates: Are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Letters, 4(9), 1567–1573.

    Google Scholar 

  • Berger, M. (2016). Nanotechnology: The future is tiny. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Bergeson, L. L. (2010). Nanosilver: US EPA’s pesticide office considers how best to proceed. Environmental Quality Management, 19(3), 79–85.

    Article  Google Scholar 

  • Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A. A., Prasad, R. (2016). Nano-biofungicides: Emerging trend in insect pest control. In Advances and applications through fungal nanobiotechnology (pp. 307–319). Cham: Springer.

    Google Scholar 

  • bin Hussein, M. Z., Yahaya, A. H., Zainal, Z., & Kian, L. H. (2005). Nanocomposite-based controlled release formulation of an herbicide, 2, 4-dichlorophenoxyacetate incapsulated in zinc–aluminium-layered double hydroxide. Science and Technology of Advanced Materials, 6(8), 956.

    Article  CAS  Google Scholar 

  • Biyela, P. T., Lin, J., & Bezuidenhout, C. C. (2004). The role of aquatic ecosystems as reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. Water Science and Technology, 50(1), 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Brock, D. A., Douglas, T. E., Queller, D. C., & Strassmann, J. E. (2011). Primitive agriculture in a social amoeba. Nature, 469(7330), 393.

    Article  CAS  PubMed  Google Scholar 

  • Brune, H., Ernst, H., Grunwald, A., Grünwald, W., Hofmann, H., Krug, H., Janich, P., Mayor, M., Rathgeber, W., Schmid, G., Simon, U. (2006). Nanotechnology: Assessment and perspectives (Vol. 27). New York: Springer.

    Google Scholar 

  • Calabi-Floody, M., Medina, J., Rumpel, C., Condron, L. M., Hernandez, M., Dumont, M., & de la Luz Mora, M. (2018). Smart fertilizers as a strategy for sustainable agriculture. In Advances in agronomy (Vol. 147, pp. 119–157). Academic.

    Google Scholar 

  • Celis, R., Adelino, M. A., Hermosín, M. C., & Cornejo, J. (2012). Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. Journal of Hazardous Materials, 209, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy, A. K., Kandakoor, S. B., Atanu, B., Dhanabala, K., Gurunatha, K., & Ramesh, P. (2012). Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica, 6(3), 271–281.

    Google Scholar 

  • Chandra, J. H., Raj, L. A., Namasivayam, S. K. R., Bharani, R. A. (2013). Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. In Advanced nanomaterials and emerging engineering technologies (ICANMEET), 2013 international conference on (pp. 387–390). IEEE.

    Google Scholar 

  • Chandrashekharaiah, M., Kandakoor, S. B., Gowda, G. B., Kammar, V., & Chakravarthy, A. K. (2015). Nanomaterials: A review of their action and application in pest management and evaluation of DNA-tagged particles. In New horizons in insect science: Towards sustainable pest management (pp. 113–126). New Delhi: Springer.

    Google Scholar 

  • Cioffi, N., Torsi, L., Ditaranto, N., Sabbatini, L., Zambonin, P. G., Tantillo, G., Ghibelli, L., D’Alessio, M., Bleve-Zacheo, T., & Traversa, E. (2004). Antifungal activity of polymer-based copper nanocomposite coatings. Applied Physics Letters, 85(12), 2417–2419.

    Article  CAS  Google Scholar 

  • Densilin, D. M., Srinivasan, S., Manju, P., & Sudha, S. (2011). Effect of individual and combined application of Biofertilizers, Inorganic fertilizer and Vermi compost on the biochemical constituents of Chilli (Ns – 1701). Journal of Biofertilizers & Biopesticides, 2, 106.

    Google Scholar 

  • Dhaliwal, G. S., Vikas, J., & Dhawan, A. K. (2010). Insect pest problems and crop losses: Changing trends. Indian Journal of Ecology, 37(1), 1–7.

    Google Scholar 

  • Dhekney, S. A., Li, Z. T., Van Aman, M., Dutt, M., Tattersall, J., Kelley, K. T., & Gray, D. J. (2005). Genetic transformation of embryogenic cultures and recovery of transgenic plants in Vitis vinifera, Vitis rotundifolia and Vitis hybrids. In International symposium on biotechnology of temperate fruit crops and tropical species (Vol. 738, pp. 743–748).

    Google Scholar 

  • dos Santos Silva, M., Cocenza, D. S., Grillo, R., de Melo, N. F. S., Tonello, P. S., de Oliveira, L. C., Cassimiro, D. L., Rosa, A. H., & Fraceto, L. F. (2011). Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. Journal of Hazardous Materials, 190(1–3), 366–374.

    Article  CAS  Google Scholar 

  • Dwivedi, S., Saquib, Q., Al-Khedhairy, A. A., Musarrat, J. (2016). Understanding the role of nanomaterials in agriculture. In Microbial inoculants in sustainable agricultural productivity (pp. 271–288). New Delhi: Springer.

    Google Scholar 

  • Elek, N., Hoffman, R., Raviv, U., Resh, R., Ishaaya, I., & Magdassi, S. (2010). Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 372(1–3), 66–72.

    Article  CAS  Google Scholar 

  • El-Shenawy, N. S., El-Ahmary, B., & Al-Eisa, R. A. (2011). Mitigating effect of ginger against oxidative stress induced by atrazine herbicides in mice liver and kidney. Journal Biofertilizers & Biopesticides, 2, 107.

    Google Scholar 

  • Frederick, B. A., & Caesar, A. J. (2000). Analysis of bacterial communities associated with insect biological control agents using molecular techniques. In R. Neal & N. R. Spencer (Eds.), Proceedings of the X international symposium on biological control of weeds (pp. 261–267). Bozeman: Montana State University.

    Google Scholar 

  • Gangloff, W. J., Westfall, D. G., Peterson, G. A., & Mortvedt, J. J. (2006). Mobility of organic and inorganic zinc fertilizers in soils. Communications in Soil Science and Plant Analysis, 37(1–2), 199–209.

    Article  CAS  Google Scholar 

  • Gogoi, R., Dureja, P., & Singh, P. K. (2009). Nanoformulations-A safer and effective option for agrochemicals. Indian Farming, 59(8), 7–12.

    Google Scholar 

  • Grillo, R., Pereira, A. E., Nishisaka, C. S., de Lima, R., Oehlke, K., Greiner, R., & Fraceto, L. F. (2014). Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Journal of Hazardous Materials, 278, 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Grillo, R., Abhilash, P. C., & Fraceto, L. F. (2016). Nanotechnology applied to bio-encapsulation of pesticides. Journal of Nanoscience and Nanotechnology, 16(1), 1231–1234.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez, F. J., Mussons, M. L., Gaton, P., & Rojo, R. (2011). Nanotechnology and food industry. Scientific, health and social aspects of the food industry. Croatia: In Tech. Book Chapter.

    Google Scholar 

  • Hajirostamlo, B., Mirsaeedghazi, N., Arefnia, M., Shariati, M. A., Fard, E. A. (2015). The role of research and development in agriculture and its dependent concepts in agriculture [short review]. Asian Journal of Applied Science and Engineering, 4. https://doi.org/10.1016/j.cocis.2008.01.005.

  • Hett, A. (2004). Nanotechnology: Small matters, many unknown. Zurich: Swiss Reinsurance Co.

    Google Scholar 

  • Hua, K. H., Wang, H. C., Chung, R. S., & Hsu, J. C. (2015). Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. Journal of Pesticide Science, 40(4), 208–213.

    Article  CAS  Google Scholar 

  • Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., & Hong, J. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10), 105104.

    Article  CAS  Google Scholar 

  • Joseph, T., & Morrison, M. (2006). Nanotechnology in agriculture and food: A nanoforum report. www.nanoforum.org. Accessed 19 Nov 2011.

  • Kah, M. (2015). Nanopesticides and nanofertilizers: Emerging contaminants or opportunities for risk mitigation? Frontiers in Chemistry, 3, 64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khot, L. R., Sankaran, S., Maja, J. M., Ehsani, R., & Schuster, E. W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, 35, 64–70.

    Article  CAS  Google Scholar 

  • Kitherian, S. (2017). Nano and bio-nanoparticles for insect control. Research Journal of Nanoscience Nanotechnology. https://doi.org/10.3923/rjnn.

  • Kottegoda, N., Munaweera, I., Madusanka, N., & Karunaratne, V. (2011). A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science, 101, 73–78.

    CAS  Google Scholar 

  • Kumar, G. D., Natarajan, N., & Nakkeeran, S. (2016). Antifungal activity of nanofungicide Trifloxystrobin 25%+ Tebuconazole 50% against Macrophomina phaseolina. African Journal of Microbiology Research, 10(4), 100–105.

    Article  CAS  Google Scholar 

  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514, 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Manczinger, L., Antal, Z., & Kredics, L. (2002). Ecophysiology and breeding of mycoparasitic Trichoderma strains. Acta Microbiologica et Immunologica Hungarica, 49(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  • McBratney, A. B., & Pringle, M. J. (1999). Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture, 1(2), 125–152.

    Article  Google Scholar 

  • Milani, N., McLaughlin, M. J., Stacey, S. P., Kirby, J. K., Hettiarachchi, G. M., Beak, D. G., & Cornelis, G. (2012). Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. Journal of Agricultural and Food Chemistry, 60(16), 3991–3998.

    Article  CAS  PubMed  Google Scholar 

  • Mortvedt, J. J. (1992). Crop response to level of water-soluble zinc in granular zinc fertilizers. Fertilizer Research, 33(3), 249–255.

    Article  CAS  Google Scholar 

  • Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154–163.

    Article  CAS  Google Scholar 

  • Nayan, R., Rawat, M., Negi, B., Pande, A., & Arora, S. (2016). Zinc sulfide nanoparticle mediated alterations in growth and anti-oxidant status of Brassica juncea. Biologia, 71(8), 896–902.

    Article  CAS  Google Scholar 

  • Nuruzzaman, M., Rahman, M. M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry, 64(7), 1447–1483.

    Article  CAS  PubMed  Google Scholar 

  • Ombódi, A., & Saigusa, M. (2000). Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol. Journal of Plant Nutrition, 23(10), 1485–1493.

    Article  Google Scholar 

  • Parisi, C., Vigani, M., & Rodríguez-Cerezo, E. (2015). Agricultural nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124–127.

    Article  CAS  Google Scholar 

  • Pavela, R. (2014). Limitation of plant biopesticides. In Advances in plant biopesticides (pp. 347–359). New Delhi: Springer.

    Google Scholar 

  • Pérez-de-Luque, A., & Hermosín, M. C. (2013). Nanotechnology and its use in agriculture. In Bio-nanotechnology: A revolution in food, biomedical and health sciences (pp. 383–398). West Sussex: Wiley-Blackwell.

    Google Scholar 

  • Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Purohit, R., Mittal, A., Dalela, S., Warudkar, V., Purohit, K., & Purohit, S. (2017). Social, environmental and ethical impacts of nanotechnology. Materials Today: Proceedings, 4(4), 5461–5467.

    Google Scholar 

  • Qureshi, A., Singh, D. K., & Dwivedi, S. (2018). Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences, 7(2), 3325–3335.

    Article  CAS  Google Scholar 

  • Rai, V., Acharya, S., & Dey, N. (2012). Implications of nanobiosensors in agriculture. Journal of Biomaterials and Nanobiotechnology, 3(2A), 315.

    Article  CAS  Google Scholar 

  • Raliya, R., Tarafdar, J. C., Gulecha, K., Choudhary, K., Ram, R., Mal, P., et al. (2013). Review article; scope of nanoscience and nanotechnology in agriculture. Journal of Applied Biology & Biotechnology, 1, 041–044.

    Google Scholar 

  • Rawat, M., Nayan, R., Negi, B., Zaidi, M. G. H., & Arora, S. (2017). Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. juncea. Plant Physiology and Biochemistry, 118, 274–284.

    Article  CAS  PubMed  Google Scholar 

  • Rouhani, M., Samih, M. A., & Kalantari, S. (2012). Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chilean Journal of Agricultural Research, 72(4), 590.

    Article  Google Scholar 

  • Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677–683.

    Article  CAS  PubMed  Google Scholar 

  • Sahayaraj, K., Roobadevi, M., Rajesh, S., & Azizi, S. (2015). Vernonia cinerea (L.) Less. silver nanocomposite and its antibacterial activity against a cotton pathogen. Research on Chemical Intermediates, 41(8), 5495–5507.

    Article  CAS  Google Scholar 

  • Sekhon, B. S. (2014). Nanotechnology in agri-food production: An overview. Nanotechnology, Science and Applications, 7, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramanian, K. S., & Thirunavukkarasu, M. (2017). Nano-fertilizers and nutrient transformations in soil. In Nanoscience and plant-soil systems (pp. 305–319). Cham: Springer.

    Google Scholar 

  • Subramanian, K. S., Manikandan, A., Thirunavukkarasu, M., Rahale, C. S. (2015). Nano-fertilizers for balanced crop nutrition. In Nanotechnologies in food and agriculture (pp. 69–80). Cham: Springer.

    Google Scholar 

  • Subramanian, V., Semenzin, E., Zabeo, A., Hristozov, D., Malsch, I., Saling, P., ... Marcomini, A. (2016). Integrating the social impacts into risk governance of nanotechnology. In Managing risk in nanotechnology (pp. 51–70). Cham: Springer.

    Google Scholar 

  • Tabrizi, E. F. M., Yarnia, M., Khorshidi, M. B., & Ahmadzadeh, V. (2009). Effects of micronutrients and their application method on yield, crop growth rate (CGR) and net assimilation rate (NAR) of corn cv. Jeta. Journal of Food, Agriculture & Environment, 7(2), 611–615.

    CAS  Google Scholar 

  • Thungrabeab, M., & Tongma, S. (2007). Effect of entomopathogenic fungi, Beauveria bassiana (BALSAM) and Metarhizium anisopliae (METSCH) on non target insects. Current Applied Science and Technology, 7(1–1), 8–12.

    Google Scholar 

  • U.S. Environmental Protection Agency. (2007). U.S. Environmental Protection Agency nanotechnology white paper (EPA 100/B-07/001). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Yan, J., Guan, H., Yu, J., & Chi, D. (2013). Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides. Pesticide Biochemistry and Physiology, 105(3), 197–202.

    Article  CAS  Google Scholar 

  • Yasur, J., & Rani, P. U. (2015). Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere, 124, 92–102.

    Article  CAS  PubMed  Google Scholar 

  • Zamani, S., Sendi, J. J., & Ghadamyari, M. (2011). Effect of Artemisia Annua L. (Asterales: Asteraceae) essential oil on mortality, development, reproduction and energy reserves of Plodia interpunctella (Hübner). (Lepidoptera: Pyralidae). Journal Biofertilizers & Biopesticides, 2, 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pande, A., Arora, S. (2019). Nanotechnological Interventions for Improving Plant Health and Productivity. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_17

Download citation

Publish with us

Policies and ethics