Skip to main content

Environmental Perspectives of Plant-Microbe Nexus for Soil and Water Remediation

  • Chapter
  • First Online:

Abstract

Recently, the concerns about soil and water pollution have significantly enlarged due to the vast increase in urbanization, industrialization, population growth, and fossil fuel utilization. Exposure to high levels of pollution causes serious threats to ecological systems, natural environment, human health, and food chains. In this context, effective and promising treatment methods have been developed to avoid the deterioration of the soil and water systems. Environmental remediation has been introduced to overcome the drawbacks of conventional physical, chemical, and biological treatment processes. In this chapter, various remediation techniques including phytoremediation, bioremediation, phycoremediation, and mycoremediation are reviewed. Several forms of phytoremediation, e.g., phytodegradation, phytotransformation, phytoextraction, phytovolatilization, phytostabilization, phytofiltration, phytodesalination, and phytomining, that explore the involvement of plant-based technology for toxicants and pollutants removal are discussed. The activities of microbial species during the intrinsic remediation and bioaugmentation processes are demonstrated. The assemblage of rhizobacteria in the plant root system to detoxify contaminated soils and transform hazardous elements into harmless substances is also discussed. Environmental aspects related to microalgal cultures and fungal species for water remediation are demonstrated. The study objectives are reviewed in terms of previous investigations reported in the literature. Recommendations for future works in the field of environmental remediation are suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  Google Scholar 

  • Al-Baldawi I, Abdullah S, Anuar N, Suja F, Mushrifah I (2015) Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol Eng 74:463–473

    Article  Google Scholar 

  • Ali H, Khan E, Sajad M (2013) Phytoremediation of heavy metals--concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Ansari F, Gupta S, Nasr M, Rawat I, Bux F (2018) Evaluation of various cell drying and disruption techniques for sustainable metabolite extractions from microalgae grown in wastewater: a multivariate approach. J Clean Prod 182:634–643

    Article  CAS  Google Scholar 

  • Arnold C, Parfitt D, Kaltreider M (2007) Phytovolatilization of oxygenated gasoline-impacted groundwater at an underground storage tank site via conifers. Int J Phytoremediation 9(1):53–69

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel J (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17(2):117–127

    Article  CAS  Google Scholar 

  • Batista-García RA, Kumar VV, Ariste A, Tovar-Herrera OE, Savary O, Peidro-Guzmán H, González-Abradelo D, Jackson SA, Dobson A, Sánchez-Carbente M, Folch-Mallol J, Leduc R, Cabana H (2017) Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J Environ Manage 198:1–11

    Article  Google Scholar 

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J 49(4):740–749

    Article  CAS  Google Scholar 

  • Chandrangsu P, Rensing C, Helmann J (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15(6):338–350

    Article  CAS  Google Scholar 

  • Curtis F, Lammey J (1998) Intrinsic remediation of a diesel fuel plume in Goose Bay, Labrador, Canada. Environ Pollut 103:203–210

    Article  CAS  Google Scholar 

  • Dolphen R, Thiravetyan P (2015) Phytodegradation of Ethanolamines by Cyperus alternifolius: effect of Molecular Size. Int J Phytoremediation 17(7):686–692

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2005) Chromate resistant Bacillus cereus augments sunflower growth by reducing toxicity of Cr(VI). J Plant Biol 48:187–194

    Article  CAS  Google Scholar 

  • FAO/WHO (2011) Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods Fifth Session the Hague. the Netherlands, 21–25 March 2011: FAO/WHO.

    Google Scholar 

  • Fawzy M, Nasr M, Abdel-Gaber A, Fadly S (2016) Biosorption of Cr(VI) from aqueous solution using agricultural wastes, with artificial intelligence approach. Sep Sci Technol 51(3):416–426

    Article  CAS  Google Scholar 

  • Fawzy M, Nasr M, Nagy H, Helmi S (2018) Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste. Environ Sci Pollut Res 25(6):5875–5888

    Article  CAS  Google Scholar 

  • Fester T, Giebler J, Wick LY, Schlosser D, Kästner M (2014) Plant-microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol 27:168–175

    Article  CAS  Google Scholar 

  • Fresno T, Moreno-Jiménez E, Zornoza P, Peñalosa J (2018) Aided phytostabilisation of As- and Cu-contaminated soils using white lupin and combined iron and organic amendments. J Environ Manage 205:142–150

    Article  CAS  Google Scholar 

  • García-Sánchez M, Košnář Z, Mercl F, Aranda E, Tlustoš P (2018) A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicol Environ Saf 147:165–174

    Article  Google Scholar 

  • Ghasemi Z, Ghaderian S, Rodríguez-Garrido B, Prieto-Fernández Á (2018) Plant species-specificity and effects of bioinoculants and fertilization on plant performance for nickel phytomining. Plant Soil 425(1-2):265–285

    Article  CAS  Google Scholar 

  • Gonçalves A, Pires J, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Guarino C, Spada V, Sciarrillo R (2017) Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation – assisted landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 170:10–16

    Article  CAS  Google Scholar 

  • Gupta S, Kumar N, Guldhe A, Ansari F, Rawat I, Nasr M, Bux F (2018) Wastewater to biofuels: comprehensive evaluation of various flocculants on biochemical composition and yield of microalgae. Ecol Eng 117:62–68

    Article  Google Scholar 

  • Gupta SK, Sriwastav A, Ansari FA, Nasr M, Nema AK (2017) Phycoremediation: an eco-friendly algal technology for bioremediation and bioenergy production. In: Bauddh K, Singh B, Korstad J (eds) Phytoremediation potential of bioenergy plants. Springer, Singapore

    Google Scholar 

  • Islam M, Hosen M, Uddin M (2018) Phytodesalination of saline water using Ipomoea aquatica, Alternanthera philoxeroides and Ludwigia adscendens. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-1705-z

    Article  Google Scholar 

  • Islam M, Saito T, Kurasaki M (2015) Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: phytotoxicity, uptake kinetics, and mechanism. Ecotoxicol Environ Saf 112:193–200

    Article  CAS  Google Scholar 

  • Jlassi A, Zorrig W, El Khouni A, Lakhdar A, Smaoui A, Abdelly C, Rabhi M (2013) Phytodesalination of a moderately-salt-affected soil by Sulla carnosa. Int J Phytoremediation 15(4):398–404

    Article  Google Scholar 

  • Kuiper I, Lagendijk E, Bloemberg G, Lugtenberg B (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17(1):6–15

    Article  CAS  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4(29). https://doi.org/10.1186/s13568-014-0029-8

  • Limmer M, Burken J (2016) Phytovolatilization of organic contaminants. Environ Sci Technol 50:6632–6643

    Article  CAS  Google Scholar 

  • Liu L, Li W, Song W, Guo M (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59(1):1–11

    Article  CAS  Google Scholar 

  • Muchate N, Rajurkar N, Suprasanna P, Nikam T (2018) Evaluation of Spinacia oleracea (L.) for phytodesalination and augmented production of bioactive metabolite, 20-hydroxyecdysone. Int J Phytoremediation 20(10):981–994

    Article  CAS  Google Scholar 

  • Nasr M (2018) Chapter 8: Modeling applications in environmental bioremediation studies. In: Phytobiont and ecosystem restitution, 1st edn. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_8

    Chapter  Google Scholar 

  • Nasr M, Elreedy A, Abdel-Kader A, Elbarki W, Moustafa M (2014) Environmental consideration of dairy wastewater treatment using hybrid sequencing batch reactor. Sustain Environ Res 24(6):449–456

    Google Scholar 

  • Nasr M, Ismail S (2015) Performance evaluation of sedimentation followed by constructed wetlands for drainage water treatment. Sustain Environ Res 25(3):141–150

    CAS  Google Scholar 

  • Nies D (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 781:1–27

    Google Scholar 

  • Prabhakaran P, Ashraf M, Aqma W (2016) Microbial stress response to heavy metals in the environment. RSC Adv 6(111):109862–109877

    Article  CAS  Google Scholar 

  • Rajasulochana P, Preethy V (2016) Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour Efficient Technol 2(4):175–184

    Article  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99(9):3491–3498

    Article  CAS  Google Scholar 

  • Rashidi H, GhaffarianHoseini A, GhaffarianHoseini A, Nik Sulaiman N, Tookey J, Hashim N (2015) Application of wastewater treatment in sustainable design of green built environments: a review. Renew Sustain Energy Rev 49:845–856

    Article  Google Scholar 

  • Rosenkranz T, Kidd P, Puschenreiter M (2018) Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash. Waste Manage 73:351–359

    Article  CAS  Google Scholar 

  • Sakakibara M, Watanabe A, Inoue M, Sano S, Kaise T (2010) Phytoextraction and phytovolatilization of arsenic from as-contaminated soils by Pteris vittata. In: Proceedings of the annual international conference on soils, sediments, water and energy 12(26)

    Google Scholar 

  • Sandhi A, Landberg T, Greger M (2018) Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). Environ Pollut 237:1098–1105

    Article  CAS  Google Scholar 

  • Singh M, Srivastava P, Verma P, Kharwar R, Singh N, Tripathi R (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119(5):1278–1290

    Article  CAS  Google Scholar 

  • Srivastava JK, Chandra H, Kalra SJS, Mishra P, Khan H, Yadav P (2017) Plant–microbe interaction in aquatic system and their role in the management of water quality: a review. Appl Water Sci 7(3):1079–1090

    Article  CAS  Google Scholar 

  • Stout L, Nüsslein K (2010) Biotechnological potential of aquatic plant-microbe interactions. Curr Opin Biotechnol 21(3):339–345

    Article  CAS  Google Scholar 

  • Touceda-González M, Álvarez-López V, Prieto-Fernández Á, Rodríguez-Garrido B, Trasar-Cepeda C, Mench M, Puschenreiter M, Quintela-Sabarís C, Macías-García F, Kidd PS (2017) Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J Environ Manage 186.(Pt 2:301–313

    Article  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:35

    Article  Google Scholar 

  • Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601

    Article  CAS  Google Scholar 

  • Wu S, Kuschk P, Brix H, Vymazal J, Dong R (2014) Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res 57:40–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nasr, M. (2019). Environmental Perspectives of Plant-Microbe Nexus for Soil and Water Remediation. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (eds) Microbiome in Plant Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_18

Download citation

Publish with us

Policies and ethics