Skip to main content

Biodiversity and Biotechnological Applications of Microorganisms Associated with Tropical Plants

  • Chapter
  • First Online:
Microbiome in Plant Health and Disease

Abstract

According to the World Trade Organization, the largest agrarian producers in the world are in the tropics. Moreover, the appreciated global resources of biological diversity also occur in tropical areas, such as the Amazon, which is considered one of the chief rain forests and plays a significant role in protection and discovery of novel microbial, plant, and animal species. However, data from tropical regions are scarce. Little is known about the great biodiversity of microorganisms and the application of these resources to improve tropical agriculture. Tropical agriculture presents more problems of greater complexity than agriculture in temperate climates. One approach for solving some agricultural problems in the tropics is sustainable use of microorganisms. Efficient microbes have shown potential in the agricultural field for use in plant development and growth promotion, mostly by delivering valuable compounds to their host plants. Microbial plant growth promoters may improve crop development and growth in numerous biological ways, such as production of secondary metabolites (for example, plant development hormones, including auxins), production of siderophores, phosphate solubilization, and nitrogen fixation. Microorganisms have also received considerable attention because of their potential for use as agents for biological control of various plant fungal pathogens and bacterial diseases. There are numerous processes associated with plant–pathogen hostility. The competition for space and nutrients in the host plant, in the rhizospheric region, and in the soil can be fierce, as can the production of antimicrobial complexes that directly affect plant pathogens. These mainly include lytic enzymes, antibiotics, volatile organic compounds, and other compounds. This review discusses studies on the microorganism diversity that is present in well-established tropical crops, with examples of successful use of microorganisms in solving tropical problems, with the aim being to achieve more sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Actualitix (2013) https://en.actualitix.com/country/wld/banana-producing-countries.php. Accessed June 2019

  • Ahmed FE (2003) Genetically modified probiotics in foods. Trends Biotechnol 21:491–497

    Article  CAS  PubMed  Google Scholar 

  • Almeida RPP, Nunney L (2015) How do plant diseases caused by Xylella fastidiosa emerge. Plant Dis 99:1457–1467

    Article  PubMed  Google Scholar 

  • Almeida KA, Armesto C, Monteiro FP, Souza JT (2018) Diversity of Trichoderma species isolated from dead branches and sapwood of Theobroma cacao trees. Trop Plant Pathol 43:90–94

    Article  Google Scholar 

  • Araujo WL, Saridakis HO, Barroso PAV, Aguilar-Vildoso CI, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  CAS  PubMed  Google Scholar 

  • Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Azevedo JL (2002) Diversity of endophytic bacterial population and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4096–4914

    Article  CAS  Google Scholar 

  • Armanhi JSL, Souzal RSC, Damasceno NB, Araújo LM, Imperial J, Arruda P (2018) A community-based culture collection for targeting novel plant growth–promoting bacteria from the sugarcane microbiome. Front Plant Sci 8:2191. https://doi.org/10.3389/fpls.2017.02191

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen in a tropical tree. Proc Natl Acad Sci 100:15649–15654

    Article  CAS  PubMed  Google Scholar 

  • Azevedo JL, Araujo WL (2007) Diversity and applications of endophytic fungi isolated from tropical plants. In: Ganguli BN, Desmuckh SK (eds) Fungal multifaceted microbes. Anamaya Publishers, New Delhi, pp 207–231

    Google Scholar 

  • Azevedo JL, Araujo WL, Lacava PT (2016) The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants. Genet Mol Biol 39:476–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldani VLD, Baldani JI, Olivares FL, Döbereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and closely related Pseudomonas rubrisubalbicans. Symbiosis 13:65–73

    Google Scholar 

  • Batista BD, Almeida JR, Bezerra TE, Azevedo JL, Quecine MC (2017) Describing the unexplored microrganisms associated with guarana: a typical tropical plant. In: de Azevedo JL, Quecine MC (eds) Diversity and benefits of microorganisms from the tropics. Springer, Cham, pp 293–312

    Chapter  Google Scholar 

  • Batista BD, Lacava PT, Ferrari A, Teixeira-Silva NS, Bonatelli ML, Tsui S, Mondin M, Kitajima EW, Pereira JO, Azevedo JL, Quecine MC (2018) Screening of tropically derived, multi-trait plant growth-promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiol Res 206:33–42

    Article  PubMed  Google Scholar 

  • Beard CB, Durvasula RV, Richards FF (1998) Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 4:581–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beard CB, Dotson EM, Pennington PM, Eichler S, Cordon-Rosales C, Durvasula RV (2001) Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol 31:621–627

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJ, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Bogas AC, Ferreira AJ, Araujo WL, Astolfi-Filho S, Kitajima EW, Lacava PT, Azevedo JL (2015) Endophytic bacterial diversity in the phyllosphere of Amazon Paullinia cupana associated with asymptomatic and symptomatic anthracnose. Springerplus 4:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonatelli M (2012) Bactérias endofíticas e epifiticas cultivadas e não cultivadas do guaranazeiro e o controle da antracnose. Dissertation, Escola superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo

    Google Scholar 

  • Bonatelli ML, Tsui S, Marcon J, Batista BD, Kitajima EW, Pereira JO, Azevedo JL, Quecine MC (2016) Antagonistic activity of fungi from anthracnose lesions on Paullinia cupana against Colletotrichum sp. J Plant Pathol 98:197–205

    Google Scholar 

  • Caballero-Mellado J, Martínez-Aguilar L, Paredes-Valdez G, Estrada-De Los Santos P (2004) Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int J Syst Evol Microbiol 54:1165–1172

    Article  CAS  Google Scholar 

  • Cabral AS, Carvalho PM, Pinotti T, Hagler AN, Mendonça-Hagler LG, Macrea A (2009) Killer yeasts inhibit the growth of the phytopathogen M. perniciosa, the causal agent of witches’ broom disease. Braz J Microbiol 40:108–110

    Article  Google Scholar 

  • Cao LX, You JL, Zhou SN (2002) Endophytic fungi from Musa acuminata leaves and roots in South China. World J Microbiol Biotechnol 18:69–171

    Article  Google Scholar 

  • Castro RA, Quecine MC, Lacava PT, Batista BD, Luvizzoto DM, Marcon J, Melo IS, Azevedo JL (2014) Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. Springerplus 3:382

    Article  PubMed  PubMed Central  Google Scholar 

  • Castro RA, Dourado MN, Almeida JR, Lacava PT, Nave A, Melo IS, Azevedo JL, Quecine MC (2018) Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth. Braz J Microbiol 49:59–66

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante VA, Döbereiner J (1988) A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Döbereiner J (1959) Sobre a ocorrência de Beijerinckia em alguns solos do Brasil. Rev Bras Biol 19:151–160

    Google Scholar 

  • Döbereiner J (1961) Nitrogen fixing bacteria of the genus Beijerinckia Drex. in the rhizosphere of sugarcane. Plant Soil 15:211–216

    Article  Google Scholar 

  • Döbereiner J, Ruschel AP (1958) Uma nova espécie de Beijerinckia. Revista de Biologia 1:261–272

    Google Scholar 

  • Dourado MN, Santos DS, Nunes RL, Oliveira LRB, Oliveira MB, Araujo WL (2015) Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6. J Basic Microbiol 55:1357–1366

    Article  CAS  PubMed  Google Scholar 

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases: review and future prospects. Biol Control 103:62–68

    Article  Google Scholar 

  • Falcaeo LL, Silva-Werneck JO, Vilarinho BR (2014) Antimicrobial and plant growth–promoting properties of the cacao endophyte Bacillus subtilis ALB629. J Appl Microbiol 116:1584–1592

    Article  Google Scholar 

  • FAO [Food and Agriculture Organization of the United Nations] (2016) FAOSTAT beta: food and agriculture data. http://faostat.fao.org/beta/en/#home. Accessed 16 Oct 2016

  • Ferreira-Filho AS, Quecine MC, Bogas AC, Rossetto PB, Lima AOS, Lacava PT, Azevedo JL, Araújo WL (2012) Endophytic Methylobacterium extorquens expresses a heterologous β-1,4-endoglucanase A (EglA) in Catharanthus roseus seedlings, a model host plant for Xylella fastidiosa. World J Microbiol Biotechnol 28:1475–1481

    Article  CAS  PubMed  Google Scholar 

  • FUNDECITRUS (2017) http://www.fundecitrus.com.br/levantamentos

  • Gai CS, Lacava PT, Quecine MC, Auriac MC, Lopes JRS, Araújo WL, Miller TA, Azevedo JL (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. J Microbiol 47:448–454

    Article  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahhaffee WF, Kçoepper JW (1997) Bacterial endophytes in agriculture crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hopkins DL (1989) Xylella fastidiosa: xylem limited bacterial pathogen of plants. Annu Rev Phytopathol 27:271–290

    Article  Google Scholar 

  • Joris HAW (2015) Nitrogênio na produção de cana-de-açúcar: aspectos agronômicos e ambientais. Dissertation, Instituto Agronômico de Campinas

    Google Scholar 

  • Karthik M, Pushpakanth R, Krishnamoorthy R, Senthikumar M (2017) Endophytic bacteria associated with banana cultivars and their inoculation effect in plant growth. J Hortic Sci Biotechnol 92:568–576

    Article  CAS  Google Scholar 

  • Kavino M, Manoranjithan SK (2018) In vitro bacterization of banana (Musa spp.) with native endophytic and rhizospheric bacterial isolates novel ways to combat Fusarium wilt. Eur J Plant Pathol 151:371–387

    Article  CAS  Google Scholar 

  • Lacava PT, Azevedo JL (2014) Biological control of insect-pests and diseases by endophytes. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, New Delhi, pp 231–243

    Chapter  Google Scholar 

  • Lacava PT, Araujo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacterium Xylella fastidiosa causal agent of citrus variegated chlorosis. Lett Appl Microbiol 39:55–59

    Article  CAS  PubMed  Google Scholar 

  • Lacava PT, Li WB, Araujo WL, Azevedo JL, Hartung JS (2006a) Rapid specific and quantitative assay for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants. J Microbiol Methods 65:535–541

    Article  CAS  PubMed  Google Scholar 

  • Lacava PT, Andreote FD, Araujo WL, Azevedo JL (2006b) Caracterização da comunidade bacteriana endofitica de citrus por isolamento, PCR especifico e DGGE. Pesq Agropec Bras 41:637–642

    Article  Google Scholar 

  • Lacava PT, Li WB, Araujo WL, Azevedo JL, Hartung JS (2007) The endophytic Curtobacterium flacumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:385–393

    Google Scholar 

  • Lambais MR, Goldman MHS, Camargo LEA, Goldman GH (2000) A genomic approach to the understanding of Xylella fastidiosa pathogenicity. Curr Opin Microbiol 3:459–462

    Article  CAS  PubMed  Google Scholar 

  • Lana TG, Azevedo JL, Pomella AWV, Monteiro RTR, Silva CB, Araujo WL (2011) Endophytic and pathogenic isolates of the cacao fungal pathogenic Moniliophthora perniciosa (tricholomataceae) are indistinguishable based on genetic and physiological analysis. Genet Mol Res 10:326–334

    Article  CAS  PubMed  Google Scholar 

  • Leite HAC, Silva AB, Gomes FP, Gramacho KP, Faria JC, Siuza JT, Loguercio LL (2013) Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systematically colonize seedlings and promote growth. Appl Microbiol Technol 57:2639–2651

    Article  CAS  Google Scholar 

  • Lima AOS, Quecine MC, Fungaro MHP, Andreote F, Arau’jo WL, Silva-Filho MC, Pizzirani-Kleiner AA, Azevedo JL (2005) Molecular characterization of a novel beta-1,4 endoglucanase from endophytic Bacillus pumilus strain. Appl Microbiol Biotechnol 68:57–65

    Article  CAS  PubMed  Google Scholar 

  • Martinez L, Caballero-Melado J, Orozco J, Martinez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 257:35–47

    Article  CAS  Google Scholar 

  • Mehnaz S (2013) Microbes—friends and foes of sugarcane. J Basic Microbiol 53:954–971

    Article  PubMed  Google Scholar 

  • Melnick RL, Suarez C, Bailey BA (2011) Isolation of endopytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao disease. Biol Control 57:236–245

    Article  Google Scholar 

  • Mendes R, Azevedo JL (2007) Valor bitecnologico de fungos endofiticos isolados de plantas de interesse econômico. In: Maia LC, Malosso E, Iano-Melo AM (eds) Micologia: avanços no conhecimento. Sociedade Brasileira de Microbiologia, Recife, pp 129–140

    Google Scholar 

  • Meyer J, Clowes M (2013) Sugarcane and its environment. In: Meyer J, Rein P, Turner P, Mathias K (eds) Good management practices for the cane sugar industry. Bartens

    Google Scholar 

  • Nankai H, Hashimoto W, Miki H, Kawai S, Kousaku M (1999) Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1. Appl Environ Microbiol 65:2520–2526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ngamau CN, Matiru VN, Tani A, Muthuri CW (2012) Isolation and identification of endophytic bacteria of banana (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr J Microbiol Res 6:6414–6422

    CAS  Google Scholar 

  • Pereira JO, Vieira MLC, Azevedo JL (1999) Endophytic fungi from Musa acuminata and their reintroduction in axenic plants. World J Microbiol Biotechnol 15:37–40

    Article  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, Hyde KD (2001) Endophytic fungi from wild banana (Musa acuminata) at Doi Suthep Pul National Park, Thailand. Mycol Res 105:1508–1513

    Article  Google Scholar 

  • Pierce NB (1892) The California vine disease. USDA Division of Vegetable Pathology bulletin number 2. US Department of Agriculture, Washington, DC. 222p

    Google Scholar 

  • Quecine MC, Araujo WL, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M, Azevedo JL, Pizzirani-Kleiner AA (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78:7511–7518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quecine MC, Araújo WL, Tsui S, Parra JRP, Azevedo JL, Pizzirani-Kleiner AA (2014) Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7. Arch Microbiol 196:227–234

    Article  CAS  PubMed  Google Scholar 

  • Redak RA, Purcell AH, Lopes JRS, Blua MJ, Mizell RF III, Andersen PC (2004) The biology of xylem fluid feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu Rev Entomol 49:243–270

    Article  CAS  PubMed  Google Scholar 

  • Reis VM, Estrada-De Los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S et al (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162

    Article  CAS  PubMed  Google Scholar 

  • Rio RVM, Hu Y, Aksoy S (2004) Strategies of the hometeam: symbioses exploited for vector-borne disease control. Trends Microbiol 12:325–336

    Article  CAS  PubMed  Google Scholar 

  • Rossetti V, Garnier M, Bove JM, Beretta MJG, Teixeira ARR, Quaggio JA, de Negri JD (1990) Presence de bacteria dans le xyleme de oranges atteintes de chlorose variegee une novelle maladie des agrumes au Brasil. C R Acad Sci 310:345–349

    Google Scholar 

  • Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araujo WL, Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of witches’ broom disease. Int J Biol Sci 1:24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sansawal R (2017) Role of endophytic in agriculture. Chem Sci Rev Lett 6:2397–2409

    Google Scholar 

  • Schimpl FC, Silva JF, Gonçalves JFC, Mazzafera P (2013) Guarana: revisiting a highly caffeinated plant from the Amazon. J Ethnopharmacol 150:14–31

    Article  CAS  PubMed  Google Scholar 

  • Sekhar AC, Thomas P (2015) Isolation and identification of shoot-tip associated endophytic bacteria from banana Grand Naime and testing for antagonistic activity Oxysporum f. sp. cubense. Am J Plant Sci 6:943–954

    Article  CAS  Google Scholar 

  • Silva KS, Reboucas TNH, Lemos OL, Bomfim MP, Bomfim AA, Esquivel GL, Barreto APP, Sao Jose AR, Dias NO, Tavares GM (2004) Patogenicidade causada pelo fungo Colletotrichum gloesporioides (Penz) em diferentes especies frutiferas. Rev Bras Frutic 28:131–133

    Article  Google Scholar 

  • Silva MCS, Polonio JC, Quecine MC, Almeida TT, Bogas AC, Pamphile JA, Pereira JO, Astolfi-Filho S, Azevedo JL (2016) Endophytic cultivable bacterial community obtained from the Paullinia cupana seed in Amazonas and Bahia regions and its antagonistic effects against Colletotrichum gloeosporioides. Microb Pathog 98:16–22

    Article  PubMed  Google Scholar 

  • Simpson AJG et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151–159

    Article  CAS  PubMed  Google Scholar 

  • Singh KP, Suman A, Singh PN, Lal M (2007) Yield and soil nutrient balance of a sugarcane plant–ratoon system with conventional and organic nutrient management in sub-tropical India. Nutr Cycl Agroecosyst 79:209–219

    Article  Google Scholar 

  • Souza Junior CA, Marcon J, Andrade PAM, Silva JÁ, Faraldo MIF, Verdi MCQ, Melo Filho AA, Azevedo JL (2018) Endophytic bacterial and fungi associated to banana leaves (Musa spp. ) cultivated under organic management. J Agric Sci 10:460–467

    Google Scholar 

  • Souza AS, Xavier AA, Costa MR, Cardoso MAS, Pereira MCT, Nietshe S (2013) Endophytic bacterial diversity in banana Prata Ana (Musa spp.) roots. Genet Mol Biol 36:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Silva MJ, González-Guerrero M, Araújo LM et al (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Souza GLOD, Silva DF, Nietshe S, Xavier AA, Pereira MCT (2017) Endophytic bacteria used as bioinoculants in micropropagated banana seedlings. Rev Bras Frutic 39:2

    Google Scholar 

  • Su L, Shen Z, Ruan Y, Tao C, Chao Y, Li R, Shen Q (2017) Isolation of antagonistic endophytes from banana roots against Meloydogine javanica and their effects on soil nematode community. Front Microbiol 8:2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Tailor AJ, Joshi B (2012) Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. J Environ Res Dev 6:688–694

    Google Scholar 

  • Tangavelu R, Gopi M (2015) Combined application of native Trichoderma isolates possessing multiple functions for the control of Fusarium wilt disease in banana Grand Naine. Biocontrol Sci Tech 25:1147–1164

    Article  Google Scholar 

  • Tejera N, Lluch C, Martinez-Toledo MV, Gonzalez-Lopez J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270:223–232

    Article  CAS  Google Scholar 

  • Thomas T, Soly TA (2009) Endophytic bacteria associated with growing shoottips of banana (Musa spp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58:952

    Article  CAS  Google Scholar 

  • Ting ASY, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. BioControl 53:541–553

    Article  Google Scholar 

  • Tuesta-Pinedo AL, Trigozo-Barta E, Torres JJC, Arevalo-Gardini E, Arevalo-Hernandez CO, Cernandez LBZ, Leon-Ttacca B (2016) Optimization of organic and inorganic fertilization cocoa (Theobroma cacao L.) with the inclusion of Trichoderma endophyte and arbuscular mycorrhizae. Tecnol Marcha 30:67–78

    Article  Google Scholar 

  • Tyson GE, Stojanovic BJ, Kuklinski RF, DiVittorio TJ, Sullivan ML (1985) Scanning electron microscopy of Pierce’s disease bacterium in petiolar xylem of grape leaves. Phytopathology 75:264–269

    Article  Google Scholar 

  • Videira SS, de Oliveira DM, de Morais RF, Borges WL, Baldani VLD, Baldani JI (2012) Genetic diversity and plant growth promoting traits of diazotrophic bacteria isolated from two Pennisetum purpureum Schum. genotypes grown in the field. Plant Soil 356:51–66

    Article  CAS  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of the term and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Zakaria L, Rahman NHA (2011) Endophytic Fusarium spp. from wild banana (Musa acuminata) roots. Afr J Microbiol Res 5:3600–3602

    Article  Google Scholar 

  • Zakria KU, Ogawa T, Yamamoto A, Saeki Y, Akao S (2008) Influence of inoculation technique on the endophytic colonization of rice by Pantoea sp. isolated from sweet potato and by Enterobacter sp. isolated from sugarcane Muhammad. Soil Sci Plant Nutr 54:224–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Lúcio Azevedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azevedo, J.L., Quecine, M.C. (2019). Biodiversity and Biotechnological Applications of Microorganisms Associated with Tropical Plants. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (eds) Microbiome in Plant Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_13

Download citation

Publish with us

Policies and ethics