Skip to main content

Plant-Microbiome Interactions in Agroecosystem: An Application

  • Chapter
  • First Online:
Microbiome in Plant Health and Disease

Abstract

Global food security is the major challenge for agricultural scientists, but it should not be on the cost of depletion of nonrenewable resources such as soil. Due to the decrease in agricultural land, the use of synthetic chemical fertilizers to increase crop productivity has placed extra strain on fragile agroecosystem, thereby deteriorating its health. Plant-associated microbial communities interact with plants positively or negatively. These interactions are affected by the quality of root exudates and physicochemical properties of soil. Beneficial soil microbes have a number of plant development and growth-endorsing characteristics including biological nitrogen fixation, phytohormone production, nutrient mobilization and solubilization, biocontrol activity, production of hydrolytic enzymes, and stress tolerance induction. These traits of beneficial microbes can be harnessed with better soil health, improved plant growth and productivity, and improved stress tolerance of crop plants. Improvement in beneficial microbial populations through rhizosphere engineering or use of microbial inoculants and/or their metabolites can be helpful to modify the soil microbiome, leading to increased productivity of agroecosystem. Present review highlights the significance of soil microbiome with special reference to plant health. The symbiotic plant microbial communications and the most prominent plant growth-promoting mechanisms used by soil microbes are discussed. The potential applications of plant-microbe interactions for improving crop productivity under natural as well as stressful situations to maintain the sustainability of agroecosystem have been explained with examples, followed by their future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aban JL, Barcelo RC, Oda EE, Reyes GA, Balangcod TD, Gutierrez RM, Hipol RM (2017) Auxin production, phosphate solubilisation and ACC deaminase activity of root symbiotic fungi (RSF) from Drynaria quercifolia L. Bull Env Pharmacol Life Sci 6(5):26–31

    Google Scholar 

  • Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea maize) under calcareous soil conditions. Saudi J Biol Sci 1:55–63

    Article  CAS  Google Scholar 

  • Abou-Shanab R, Angle J, Chaney R (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Afzal A, Bano A, Fatima M (2010) Higher soybean yield by inoculation with N-fixing and P- solubilizing bacteria. Agron Sustain Dev 30:487–495

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with Rhizobium and PGPR containing ACC-deaminase. Can J Microbiol 57(7):578–589

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62:1321–1330

    Article  CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mungbean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013c) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz J Microbiol 44(4):1341–1348

    Article  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Zeshan MSH, Nasim M, Nadeem SM, Nazli F, Jamil M (2015) Improving the productivity of cucumber through combined application of organic fertilizers and Pseudomonas fluorescens. Pak J Agri Sci 52(4):1011–1016

    Google Scholar 

  • Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313

    Chapter  Google Scholar 

  • Ahmad M, Zahir ZA, Jamil M, Nazli F, Iqbal Z (2017) Field application of ACC-deaminase biotechnology for improving chickpea productivity in Bahawalpur. Soil Environ 36(2):197–206

    Article  Google Scholar 

  • Ahmad M, Ahmad I, Hilger TH, Nadeem SM, Akhtar MF, Jamil M, Hussain A, Zahir ZA (2018) Preliminary study on phosphate solubilizing Bacillus subtilis strain Q3 and Paenibacillus sp. strain Q6 for improving cotton growth under alkaline conditions. PeerJ. https://doi.org/10.7717/peerj.5122

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadi K, Razavi BS, Maharjan M, Kuzyakov Y, Kostka SJ, Carminati A, Zarebanadkouki M (2018) Effects of rhizosphere wettability on microbial biomass, enzyme activities and localization. Rhizosphere 7:35–42

    Article  Google Scholar 

  • Alloush GAZ, Zeto SK, Clark RB (2000) Phosphorus source, organic matter and arbuscular mycorrhiza effects on growth and mineral acquisition of chickpea grown in acidic soil. J Plant Nutr 23:1351–1369

    Article  CAS  Google Scholar 

  • Alvarez-Lopez V, Prieto-Fernandez A, Roiloa S, RodriguezGarrido B, Herzig R, Puschenreiter M, Kidd PS (2017) Evaluating phytoextraction efficiency of two high biomass crops after soil amendment and inoculation with rhizobacterial strains. Environ Sci Pollut Res 24:7591–7606

    Article  CAS  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:1261071-1–1261071-6

    Article  CAS  Google Scholar 

  • Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18(4):1–39

    Article  CAS  Google Scholar 

  • Andrews M, James EK, Sprent JI, Boddey RM, Gross E, dos Reis FB Jr (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Divers 4:131–140

    Article  Google Scholar 

  • Andrews M, Raven JA, Lea PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol 163:174–199

    Article  CAS  Google Scholar 

  • Arkhipova TN, Prinsen EA, Veselov SU, Martinenko EV, Melentiev LV, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Armada E, Azcon R, Lopez-Castillo OM, Calvo-Polanco M, JM R’ı-L (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74

    Article  CAS  PubMed  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 8:673–677

    Google Scholar 

  • Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-b- hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22:603–606

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (2002) Ethylene: agricultural sources and applications. Ann Bot 90(3):424

    Article  Google Scholar 

  • Bacilico-Jimenz M, Aguiler S, Ventura-zapta E, Perez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bandi S, Sivasubramanian P (2012) Management of Thrips tabaci Lindeman in onion using Pseudomonas fluorescens Migula through induced resistance. J Biopest 5:1–3

    Google Scholar 

  • Bao Z, Sasaki K, Okubo T, Ikeda S, Anda M, Hanzawa E, Kaori K, Tadashi S, Hisayuki M, Minamisawa K (2013) Impact of Azospirillum sp. B510 inoculation on rice-associated bacterial communities in a paddy field. Microbes Environ 28:487–490

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisumsativum. J Plant Physiol 171:884–894

    Article  CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Planta 161:502–514

    Article  CAS  Google Scholar 

  • Barrett LG, Bever JD, Bissett A, Thrall PH (2015) Partner diversity and identity impacts on plant productivity in acacia-rhizobial interactions. J Ecol 103:130–142

    Article  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608

    Article  CAS  Google Scholar 

  • Beck HC, Hansen AM, Lauritsen FR (2003) Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol Lett 220:67–73

    Article  CAS  PubMed  Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J Soil Sci Plant Nutr 13

    Google Scholar 

  • Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the south of Brazil. Appl Soil Ecol 63:94–104

    Article  Google Scholar 

  • Benizri E, Kidd PS (2018) The role of the rhizosphere and microbes associated with hyperaccumulator plants in metal accumulation. In: Van der Ent A, Echevarria G, Baker A, Morel JL (eds) Agromining: farming for metals extracting unconventional resources using plants. Springer, Berlin, pp 157–188

    Chapter  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Berge O, Lodhi A, Brandelet G, Santaella C, Roncato MA, Christen R, Heulin T, Achouak W (2009) Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Systematic Evolu Microbiol 59:367–372

    Article  CAS  Google Scholar 

  • Bernard T, Jebbar M, Rassouli Y, Himdi KS, Hamelin J, Blanco C (1993) Ectoine accumulation and osmotic regulation in Brevibacterium linens. J Gen Microbiol 139:129–138

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48. https://doi.org/10.1038/ncomms1046

    Article  CAS  PubMed  Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Bottomley PJ, Myrold DD (2015) Biological N inputs. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic Press, pp 447–470

    Google Scholar 

  • Buscot F (2015) Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. J Plant Physiol 172:55–61

    Article  CAS  PubMed  Google Scholar 

  • Calderon K, Spor A, Breuil MC, Bru D, Bizouard F, Violle C, Barnard RL, Philippot L (2017) Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J 11:1–12

    Article  CAS  Google Scholar 

  • Calvo P, Watts DB, Kloepper JW, Torbert HA (2017) Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). J Plant Nutr Soil Sci 180:56–70

    Article  CAS  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    Article  CAS  PubMed  Google Scholar 

  • Chamani HE, Yasari E, Pirdashti H (2015) Response of yield and yield components of rice (Oryza sativa L. cv. Shiroodi) to different phosphate solubilizing microorganisms and mineral phosphorous. Int J Biosci 6:70–75

    CAS  Google Scholar 

  • Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E (2016) Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol 1:00307

    Google Scholar 

  • Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  CAS  PubMed  Google Scholar 

  • Dai ZC, Fu W, Wan LY, Cai HH, Wang N, Qi SS, Du DL (2016) Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Front Plant Sci 7:706

    PubMed  PubMed Central  Google Scholar 

  • Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Annal Agric Sci 58:195–201

    Article  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S (2001) Responses of agronomically important crops to inoculation with Azospirillum. Func Plant Biol 28:871–879

    Article  Google Scholar 

  • Dodor DE, Tabatabai MA (2003) Effect of cropping systems on phosphatases in soils. J Plant Nutr Soil Sci 166:7–13

    Article  CAS  Google Scholar 

  • Doni F, Isahak A, Zain CR, Yusoff WM (2014) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Downie JA (2014) Legume nodulation. Curr Biol 24:184–190

    Article  CAS  Google Scholar 

  • Dudeja SS, Giri R (2014) Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legume and non-legume. Afr J Microbiol Res 8:1562–1572

    Article  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • El-Deeb B, Bazaid S, Gherbawy Y, Elhariry H (2012) Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipetala) during flowering stage and their plant growth promoting traits. J Plant Interact 3:248–253

    Article  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nut 31:157–171

    Article  CAS  Google Scholar 

  • Elsheikh EAE (1992) Effect of salinity on growth, nodulation and nitrogen yield of inoculated and nitrogen fertilized chickpea (Cicer arietinum L.). Arch Biotechnol 1:17–28

    Google Scholar 

  • Etminani F, Harighi B (2018) Isolation and identification of endophytic bacteria with plant growth promoting activity and biocontrol potential from wild pistachio trees. Plant Pathol J 34:208–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira AS, Pires RR, Rabelo PG, Oliveira RC, Luz JMQ, Brito CH (2013) Implications of Azospirillum brasilense inoculation and nutrient addition on maize in soils of the Brazilian Cerrado under greenhouse and field conditions. Appl Soil Ecol 72:103–108

    Article  Google Scholar 

  • Forawi HAS (1994) Effects of salinity on nodulation and nitrogen fixation of fenugreek (Trigonella foenumgraecum). MSc (Agri) Thesis, Faculty of Agriculture, University of Khartoum, Sudan

    Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT, Daugherty S, Ren Q, Badger JH, Durkin AS, Huot H, Shrivastava S, Kothari S, Dodson RJ, Mohamoud Y, Khouri H, Roesch LF, Krogfelt KA, Struve C, Triplett EW, Methe BA (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frank B (1889) Über die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft 7:332–346

    Google Scholar 

  • Fravel D (2005) Commercialization and implementation of biocontrol 1. Annu Rev Phytopathol 43:337–335

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM, Sayer GM (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society of Microbiology, Washington, DC, pp 237–256

    Chapter  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 17–46

    Chapter  Google Scholar 

  • Gandhi A, Muralidharan G (2016) Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol 76:1–8

    Article  CAS  Google Scholar 

  • Gao Y, Liu Q, Zang P, Li X, Ji Q, He Z et al (2015) An endophytic bacterium isolated from Panax ginseng CA Meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem Lett 11:132–138

    Article  CAS  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    Article  CAS  Google Scholar 

  • Garcia JE, Maroniche G, Creus C, Suarez-Rodríguez R, Ramirez-Trujillo JA, Groppa MD (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi Z, Ghaderian SM, Rodriguez-Garrido B, Prieto-Fernandez A, Kidd PS (2018) Plant species-specificity and effects of bioinoculants and fertilization on plant performance for nickel phytomining. Plant Soil 425:265–285

    Article  CAS  Google Scholar 

  • Ghavami N, Alikhani HA, Pourbabaee AA, Besharati H (2016) Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of canola and maize plants. Comm Soil Sci Plant Anal 47:1517–1527

    Article  CAS  Google Scholar 

  • Ghorchiani M, Etesami H, Alikhani HA (2018) Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric, Ecosys Environ 258:59–70

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Cheng Z, Duan J (2007) Promotion of plant growth by ACC deaminase- producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Goicoechea N, Antol’ın MC, S’anchez-D’ıaz M (1997) Gas exchange is related to the hormonal balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997

    Article  CAS  Google Scholar 

  • Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. In: Proceedings of the 4th international fertilizer association technical conference. IFA, Paris. (Vol. 220)

    Google Scholar 

  • González MBR, Lopez JG, (2013) Beneficial plant-microbial interactions: ecology and applications. CRC Press, Taylor and Francis Group, LLC

    Google Scholar 

  • Gouda S, Das G, Sen SK, Shin H, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538. https://doi.org/10.3389/fmicb.2016.01538

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin H, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  PubMed  Google Scholar 

  • Grover M, Ali Sk Z, Sandhya V, Abdul Rasul, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Guimaraes AA, Jaramillo PMD, Nóbrega RSA, Florentino LA, Silva KB, de Moreira FMS (2012) Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the Western Amazon by using cowpea as the trap plant. Appl Environ Microbiol 78:6726–6733

    Article  CAS  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10:230–242

    Article  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, François-Xavier E, Dieudonne N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Heydarian Z, Gruber M, Glick BR, Hegedus DD (2018) Gene expression patterns in roots of camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene. Front Microbiol 9

    Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801

    Article  Google Scholar 

  • Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak J Agri Sci 52:915–922

    Google Scholar 

  • Hussain M, Asgher Z, Tahir M, Ijaz M, Shahid M, Ali H, Sattar A (2016) Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak J Agri Sci 53:633–664

    Google Scholar 

  • Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2010) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ 25:58–61

    Article  PubMed  Google Scholar 

  • Jalgaonwala RE, Mohite BV, Mahajan RT (2011) Natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1:21–32

    Google Scholar 

  • Jamil M, Ahamd M, Anwar F, Zahir ZA, Kharal MA, Nazli F (2018) Inducing drought tolerance in wheat through combined use of L-tryptophan and Pseudomonas fluorescens. Pak J Agri Sci 55:331–337

    Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  CAS  PubMed  Google Scholar 

  • Jennings DH (1994) Translocation in fungal mycelia. In: Wessels JGH, Meinhardt F (eds) The Mycota: growth, differentiation and sexuality. Springer, Berlin, pp 163–173

    Chapter  Google Scholar 

  • Jha CK, Aeron A, Patel BV, Maheshwari DK, Saraf M (2011) Enterobacter: role in plant growth promotion. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Heidelberg, pp 159–182

    Chapter  Google Scholar 

  • Jodeh S, Alkowni R, Hamed R, Samhan S (2015) The study of electrolyte leakage from barley (Hordeum vulgare L) and pearl millet using plant growth promotion (PGPR) and reverse osmosis. J Food Nutr Res 3:422–429

    Article  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kachhawa D (2017) Microorganisms as a biopesticides. J Entomol Zool Studies 5:468–473

    Google Scholar 

  • Kaiser C, Kilburn MR, Clode PL, Fuchslueger L, Koranda M, Cliff JB, Solaiman ZM, Murphy DV (2015) Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytol 205:1537–1551

    Article  CAS  PubMed  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kawaguchi M, Minamisawa K (2010) Plant-microbe communications for symbiosis. Plant Cell Physiol 51:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Akhtar MJ, Mahmood MH, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236

    Article  CAS  Google Scholar 

  • Khalloufi M, Martinez-Andujar C, Lachaal M, Karray-Bouraoui N, Perez-Alfocea F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144

    Article  CAS  PubMed  Google Scholar 

  • Khamwan S, Boonlue S, Jogloy S, Mongkolthanaruk W (2018) Characterization of endophytic bacteria and their response to plant growth promotion in Helianthus tuberosus L. Biocataly Agri Biotechnol 13:153–159

    Article  Google Scholar 

  • Khan MY, Asghar HN, Jamshaid MU, Akhtar MJ, Zahir ZA (2013) Effect of microbial inoculation on wheat growth and phyto-stabilization of chromium contaminated soil. Pak J Bot 45:27–34

    CAS  Google Scholar 

  • Kidd PS, Álvarez-López V, Becerra-Castro C, Cabello-Conejo M, Prieto-Fernández Á (2017) Chapter three-potential role of plant-associated bacteria in plant metal uptake and implications in phytotechnologies. Adv Bot Res 83:87–126

    Article  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kisiala A, Laffont C, Emery RJN, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol Plant-Microbe Interact 26:1225–1231

    Article  CAS  PubMed  Google Scholar 

  • Knappova J, Pankova H, Munzbergova Z (2016) Roles of arbuscular mycorrhizal fungi and soil abiotic conditions in the establishment of a dry grassland community. PLoS One 11(7):1–24

    Article  CAS  Google Scholar 

  • Konieczny A, Kowalaska I (2016) The role of arbuscular mycorrhiza in zinc uptake by lettuce grown at two phosphorus levels in the substrate. Agri Food Sci 25:124–137

    CAS  Google Scholar 

  • Kotan R, Sahin F, Demirci E, Eken C (2009) Biological control of the potato dry rot caused by fusarium species using PGPR strains. Biol Control 50:194–198

    Article  Google Scholar 

  • Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M (2010) How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol 51:1381–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    Article  CAS  Google Scholar 

  • Ladha JK, Barraquio WL, Watanabe I (1982) Immunological techniques to identify Azospirillum associated with wetland rice. Can J Microbiol 28:478–485

    Article  CAS  PubMed  Google Scholar 

  • Lee EH, Eom AH (2015) Growth characteristics of Rhizophagus clarus strains and their effects on the growth of host plants. Mycobiology 43:444–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Li XL, Zhang JL, Gai JP, Cai XBL, Christie P, Li X (2015) Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan plateau. Environ Microbiol 17:2841–2857

    Article  CAS  PubMed  Google Scholar 

  • Liu WYY, Ridgway HJ, James TK, Premaratne M, Andrews M (2012) Characterisation of rhizobia nodulating Galega officinalis (goat’s rue) and Hedysarum coronarium (sulla) NZ. Plant Prot 65:192–196

    CAS  Google Scholar 

  • Liu H, Yuan M, Tan SY, Yang XP, Lan Z, Jiang QY, Ye ZH, Jing YX (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and cd uptake by cd-hyperaccumulator Solanumnigrum. Appl Soil Ecol 89:44–49

    Article  Google Scholar 

  • Lone R, Shuab R, Sharma V, Kumar V, Mir R, Koul KK (2015) Effect of arbuscular mycorrhizal fungi on growth and development of potato (Solanum tuberosum) plant. Asian J Crop Sci 7:233–243

    Article  Google Scholar 

  • Lopez-Lopez A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as rhizobium endophyticum sp. nov. Syst Appl Microbiol 33(6):322–327

    Article  PubMed  Google Scholar 

  • Lu L, Wu Q (2017) Mycorrhizas promote plant growth, root morphology and chlorophyll production in white clover. Biotechnology 16:34–39

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynch J (1990) The rhizosphere. Wiley, London, p 458

    Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres AM (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44:7–12

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK (2013) Bacteria in agrobiology: disease management. Springer Science & Business Media, Springer-Verlag Berlin Heidelberg

    Book  Google Scholar 

  • Martin CA, Stutz JC (2004) Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza 14:241–244

    Article  PubMed  Google Scholar 

  • Matthijs S, ATehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  CAS  PubMed  Google Scholar 

  • Mbodj D, Effa-Effa B, Kane A, Manneh B, Gantet P, Laplaze L, Diedhiou AG, Grondin A (2018) Arbuscular mycorrhizal symbiosis in rice: establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 8:12–26

    Article  Google Scholar 

  • McAdam EL, Reid JB, Foo E (2018) Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. J Exp Bot 69:2117–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mia MA, Shamsuddin ZH, Zakaria W, Marziah M (2007) Associative nitrogen fixation by Azospirillum and Bacillus spp. in bananas. Infomusa 16:11–15

    Google Scholar 

  • Micallef SA, Shiaris MP, Colón-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40:43–56

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. J Basic Microbiol 52:549–558

    Article  CAS  PubMed  Google Scholar 

  • Molla AH, Shamsuddin ZH, Halimi MS, Morziah M, Puteh AB (2001) Potential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biol Biochem 33:457–463

    Article  CAS  Google Scholar 

  • Moreira FMS, Lange A, Klauberg-Filho O, Siqueira JO, Nobrega RSA, Lima AS (2008) Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites. Anais da Academia Brasileira de Ciencias 80:749–761

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz MZ, Ahmad M, Jamil M, Hussain T (2017) Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol Res 202:51–60

    Article  CAS  PubMed  Google Scholar 

  • Mumtaz MZ, Ahmad M, Jamil M, Asad SA, Hafeez F (2018) Bacillus strains as potential alternate for zinc biofortification of maize grains. Int J AgriBiol 20:1779–1786

    CAS  Google Scholar 

  • Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Gum KU, Park KD, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Systematic Appl Microbiol 28:277–286

    Article  CAS  Google Scholar 

  • My PT, Manucharova NA, Stepanov AL, Pozdnyakov LA, Selitskaya OV, Emtsev VT (2015) Agrobacterium tumefaciens as associative nitrogen fixing bacteria. Moscow Univ Soil Sci Bull 70:133–138

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010a) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010b) Rhizobacteria capable of producing ACC-deaminase may mitigate the salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Ashraf M (2011) Microbial ACC-deaminase biotechnology: perspectives and applications in stress agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 141–185

    Google Scholar 

  • Nadeem SM, Naveed M, Zahir ZA, Asghar HN (2013) Plant-microbe interactions for sustainable agriculture: fundamentals and recent advances. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 51–103

    Chapter  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 1–36. https://doi.org/10.1007/978-81-322-2068-8_1

    Chapter  Google Scholar 

  • Nadeem SM, Ahmad M, Naveed M, Imran M, Zahir ZA, Crowley DE (2016) Relationship between in vitro characterization and comparative efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Arch Microbiol 198:379–387

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Imran M, Naveed M, Khan MY, Ahmad M, Zahir ZA, Crowley DE (2017) Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agri. https://doi.org/10.1002/jsfa.8393

    Article  CAS  PubMed  Google Scholar 

  • Nandasena KG, O’Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Systematic Evolu Microbiol 59:2140–2147

    Article  CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  CAS  PubMed  Google Scholar 

  • Nisha MC, Rajeshkumar S (2010) Effect of arbuscular mycorrhizal fungi on growth and nutrition of Wedilia chinensis (Osbeck) Merril. Indian J Sci Technol 6:676–678

    Google Scholar 

  • Nogueira MA, Cardoso EJBN (2006) Plant growth and phosphorus uptake in mycorrhizal Rangpur lime seedlings under different levels of phosphorus. Pesq Agropec Bras Brasilia 41:93–99

    Article  Google Scholar 

  • Nosheen A, Yasmin H, Naz R, Bano A, Keyani R, Hussain I (2018) Pseudomonas putida improved soil enzyme activity and growth of kasumbha under low input of mineral fertilizers. Soil Sci Plant Nutr 12:1–6

    Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Oldroyd GED (2007) Nodules and hormones. Science 315(5808):52–53

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Ortas I (2010) Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish J Agric Res 8:116–122

    Article  Google Scholar 

  • Padmavathi T, Dikshit R, Seshagiri S (2015) Effect of Rhizophagus spp. and plant growth promoting Acinetobacter junii on Solanum lycopersicum and Capsicum annuum. Brazilian J Bot 38:273–280

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Patel JK, Archana G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417:99–116

    Article  CAS  Google Scholar 

  • Pereira JA, Cavalcante VA, Baldani JI, Dobereiner J (1988) Field inoculation of sorghum and rice with Azospirillum spp. and Herbaspirillum seropedicae. In: Nitrogen fixation with non-legumes. Springer, Dordrecht, pp 219–224

    Google Scholar 

  • Pérez E, Sulbarán M, Ball MM, Yarzabál LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the southeastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    Article  CAS  Google Scholar 

  • Perez-de-Luque A, Tille S, Johnson I, Pascual-Pardo D, Ton J, Cameron DD (2017) The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens. Sci Reports 7:16409. https://doi.org/10.1038/s41598-017-16697-4

    Article  CAS  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, van der Ent S, van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol l5:308–316

    Article  CAS  Google Scholar 

  • Prabhukarthikeyan R, Saravanakumar D, Raguchander T (2014) Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato. Pest Manag Sci 70:1742–1750

    Article  CAS  PubMed  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoschus esculentus. Intl J Agric Sci 3:181–188

    Google Scholar 

  • Qiu Z, Tan H, Zhou S, Cao L (2014) Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase. J Hazard Mater 267:17–20

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM (2001) Rhizosphere and rhizosphere competence. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology. Wiley, New York, pp 859–860

    Google Scholar 

  • Raaijmakers JM, Leeman M, van Oorschot M, van der Sluis I, SchippersB, Bakker P (1995) Dose-response relationships in biological-control of fusarium-wilt of radish by Pseudomonas spp. Phytopathology 85: 1075–1081

    Article  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Ramesh A, Sharma SK, Sharma MP, Yadav N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of Central India. Appl Soil Ecol 73:87–96

    Article  Google Scholar 

  • Ramyasmruthi S, Pallavi O, Pallavi S, Tilak K, Srividya S (2012) Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian J Plant Sci Res 2:16–24

    CAS  Google Scholar 

  • Rashid MA, Mujawar LH, Shahzad T, Almeelbi T, Ismail IMI, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Rima FS, Biswas S, Sarker PK, Islam MR, Seraj ZI (2018) Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields. Ann Microbiol 68:525–535

    Article  CAS  Google Scholar 

  • Rodrigues AA, Forzani MV (2016) Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesq Agropec Trop Goiania 46:149–158

    Article  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rouws LFM, Meneses CHSG, Guedes HV, Vidal MS, Baldani JI, Schwab S (2010) Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Lett Appl Microbiol 51:325–330

    Article  CAS  PubMed  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Saghafi D, Ghorbanpour M, Lajayer BA (2018) Efficiency of rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. J Soil Sci Plant Nutr 18:253–268

    CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Indian. Microbiol Biotechnol 34:635–648

    Article  CAS  Google Scholar 

  • Salloum MS, Menduni MF, Luna CM (2017) A differential capacity of arbuscular mycorrhizal fungal colonization under well-watered conditions and its relationship with drought stress mitigation in unimproved vs. improved soybean genotypes. Bot 96:135–144

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. BiolFertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Santaella C, Schue M, Berge O, Heulin T, Achouak W (2008) The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ Microbiol 10:2150–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Saravanakumar K, Ali DM, Kathiresan K, Wang M (2018) An evidence of fungal derived 1-aminocyclopropane-1-carboxylate deaminase promoting the growth of mangroves. Beni-Suef Univ J Basic Appl Sci. https://doi.org/10.1016/j.bjbas.2018.03.013

    Article  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Sari N, Ortas I, Yetisir H (2002) Effect of mycorrhizae inoculation on plant growth, yield, and phosphorus uptake in garlic under field conditions. Commun Soil Sci Plant Anal 33:2189–2201

    Article  CAS  Google Scholar 

  • Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. Biotechnology 7:102. https://doi.org/10.1007/s13205-017-0736-3

    Article  Google Scholar 

  • Sayyed RZ, Patil AS, Gangurde NS, Bhamare HM, Joshi SA, Fulpagare UG (2008) Siderophore producing A. faecalis: a potent biofungicide for the control of ground phytopathogens. J Res Biotechnol 4:411–413

    Google Scholar 

  • Schwab S, Terra LA, Baldani JI (2018) Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Mole Gene Geno 293:997–1016

    Article  CAS  Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahsavar AR, Refahi A, Zarei M, Aslmoshtagh E (2016) Analysis of the effects of Glomus etunicatum fungi and Pseudomonas fluorescence bacteria symbiosis on some morphological and physiological characteristics of Mexican lime (Citrus aurantifolia L.) under drought stress conditions. Adv Hort Sci 30:39–45

    Google Scholar 

  • Shaikh S, Saraf M (2017) Biofortification of Triticum aestivum through the inoculation of zinc solubilizing plant growth promoting rhizobacteria in field experiment. Biocatalysis Agricul Biotechnol 9:120–126

    Article  Google Scholar 

  • Shi SM, Chen K, Gao Y, Liu B, Yang XH, Huang XZ, Liu GX, Zhu LQ, He XH (2016) Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings. Front Microbiol 7:1–11

    Google Scholar 

  • Shuab R, Lone R, Naidu J, Sharma V, Imtiyaz S, Koul KK (2014) Benefits of inoculation of arbuscular mycorrhizal fungi on growth and development of onion (Allium cepa) plant. Am Eur J Agric Environ Sci 14:527–535

    Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicerin chickpea. Microbiol Res 156:353–358

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Dubey AK (2015) Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Global J Pharm Sci 5:106–116

    CAS  Google Scholar 

  • Singh D, Singh H, Prabha R (2013) Plant-microbe interactions in agro-ecological perspectives. Volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore

    Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to stress ethylene produced in plants. Front Microbiol 6:1–14

    CAS  Google Scholar 

  • Singh D, Geat N, Rajawat MVS, Prasanna R, Saxena AK, Kaushik R (2017) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from wheat genotypes and their influence on plant growth promotion. Int J Curr Microbiol App Sci 6:1533–1540

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Boston. 800p

    Google Scholar 

  • Solano BR, Maicas JB, Gutierrez Manero J (2009) Biotechnology of the rhizosphere. In: Kirakosyan A, Kaufman PB (eds) Recent advances in plant biotechnology. Springer, Dordrecht/Heidelberg/ New York, pp 137–162

    Chapter  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signaling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. Adv Bot Res 51:283–320

    Article  CAS  Google Scholar 

  • Sprent JI, Ardley JK, James EK (2013) From north to south: a latitudinal look at legume nodulation processes. S Afr J Bot 89:31–41

    Article  Google Scholar 

  • Stephen J, Jisha MS (2009) Buffering reduces phosphate solubilizing ability of selected strains of bacteria. World J Agric Sci 5:135–137

    Google Scholar 

  • Suman A, Gaur A, Shrivastava AK, Yadav RL (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47:155–162

    Article  CAS  Google Scholar 

  • Tahat MM, Sijam R, Othman R (2012) The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse conditions. Afr J Biotechnol 11:13085–13094

    Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, vander Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2000) Plant physiology, 2nd edn. Benjamin Cumings Publishing Company, San Francisco

    Google Scholar 

  • Thijs S, Langill T, Vangronsveld J (2017) Chapter two- the bacterial and fungal microbiota of hyperaccumulator plants: small organisms, large influence. Adv Bot Res 83:43–86

    Article  Google Scholar 

  • Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX (2008) Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol 58:2871–2875

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Pauls P, Dong Z, Reid LM, Tian L (2009) Colonization of the nitrogen-fixing bacterium Gluconacetobacter diazotrophicus in a large number of Canadian corn plants. Can J Plant Sci 89:1009–1019

    Article  CAS  Google Scholar 

  • Tian B, Zhang C, Ye Y, Wen J, Wu Y, Wang H, Li H, Cai S, Cai W, Cheng Z et al (2017) Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agric Ecosyst Environ 247:149–156

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Torre-Ruiz NDL, Ruiz-Valdiviezo VM, Rincon-Molina CI, Rodriguez-Mendiola M, Arias-Castroa C, Gutierrez-Miceli FA, Palomeque-Dominguez H, Rincon-Rosales R (2016) Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Brazilian J Microbiol 47:587–596

    Article  CAS  Google Scholar 

  • Ullah A, Mushtaq H, Ali U, Hakim, Ali E, Mubeen S (2018) Screening, isolation, biochemical and plant growth promoting characterization of endophytic bacteria. Microbiol Curr Res 2:62–68

    Article  Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth- promoting rhizobacteria under salinity condition. Pedosphere 21:214–222

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velázquez E, Rodriguez-Barrueco C, Cervantes E, Chamber M, Igual J-M (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    Article  CAS  Google Scholar 

  • Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Van Oosten MJ, Di Stasio E, Cirillo V, Silletti S, Ventorino V, Pepe O, Raimondi G, Maggio A (2018) Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol 18:205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vannette RL, Hunter MD (2013) Hunter mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance. J Ecol 101:1019–1029

    Article  CAS  Google Scholar 

  • Velmourougane K, Saxena G, Prasanna R (2017) Plant-microbe interactions in the rhizosphere: mechanisms and their ecological benefits. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 193–219

    Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interactions 17:895–908

    Article  CAS  Google Scholar 

  • Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27:177–192

    Article  Google Scholar 

  • Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16:848–863

    CAS  Google Scholar 

  • Vives-Peris V, Gomez-Cadenas A, Perez-Clemente RM (2018) Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 30:1–3

    Article  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1981) Cyanide production in Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Article  Google Scholar 

  • Wakatsuki T (1995) Metal oxidoreduction by microbial cells. J Ind Microbiol Biotechnol 14:169–177

    CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Wang C, Li X, Zhou J, Wang G, Dong Y (2008) Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun Soil Sci Plant Anal 39

    Article  CAS  Google Scholar 

  • Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume: rhizobial mutualism. Cell Microbiol 14:334–342

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang Z, Jiang P, He Y, Mu Y, Lv X, Zhuang L (2018a) Bacterial diversity and community structure in the rhizosphere of four Ferula species. Sci Reports 8:5345. https://doi.org/10.1038/s41598-018-22802-y

    Article  CAS  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018b) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13(4):e0196408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weber OB, Baldani VLD, Teixeira KRS, Kirchhof G, Baldani JI, Dobereiner J (1999) Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210:103–113

    Article  CAS  Google Scholar 

  • Weilharter A, Mitter B, Shin MV, Chain PS, Nowak J, Sessitsch A (2011) Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol 193:3383–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmowicz E, Kesy J, Kopcewicz J (2008) Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol 165:1917–1928

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Li GH, Zou YN (2010) Roles of arbuscular mycorrhizal fungi on growth and nutrient acquisition of peach (Prunus persica L. Batsch) seedlings. J Anim Plant Sci 21:746–750

    Google Scholar 

  • Xun FF, Xie BM, Liu SS, Guo CH (2015) Effect of plant growth promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut R 22:598–608

    Article  CAS  Google Scholar 

  • Yamaji K, Watanabe Y, Masuya H, Shigeto A, Yui H, Haruma T (2016) Root fungal endophytes enhance heavy-metal stress tolerance of Clethra barbinervis growing naturally at mining sites via growth enhancement, promotion of nutrient uptake and decrease of heavy-metal concentration. PLoS One 11(7):1–24

    Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, De Bruijn F, Stoltzfus J, Buckley D, Schmidt TM (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yuan SF, Li MY, Fang ZY, Liu Y, Shi W, Pan B, Wu K, Shi JX, Shen B, Shen QR (2016) Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bio-organic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol Control 92:164–171

    Article  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Zahir ZA, Ahmad M, Hilger TH, Dar A, Malik SR, Abbas G, Rasche F (2018) Field evaluation of multistrain biofertilizer for improving the productivity of different mung bean genotypes. Soil Environ 37(1):45–52

    Article  CAS  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhu Y, She X (2018) Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium. Can J Microbiol 64:253–264

    Article  CAS  PubMed  Google Scholar 

  • Zong K, Huang J, Nara K, Chen YH, Shen ZG, Lian CL (2015) Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. J For Res 20:493–500

    Article  CAS  Google Scholar 

  • Zuniga A, Poupin MJ, Donoso R, Ledger T, Guiliani N, Gutierrez RA, Gonzalez B (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26:546–553

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, M., Nadeem, S.M., Zahir, Z.A. (2019). Plant-Microbiome Interactions in Agroecosystem: An Application. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (eds) Microbiome in Plant Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_12

Download citation

Publish with us

Policies and ethics