Skip to main content

Influence of the Rhizospheric Microbiome in Plant Health Management

  • Chapter
  • First Online:
Microbiome in Plant Health and Disease

Abstract

The microbiome, a community of microorganisms that inhabit a particular environment, plays a vital role in maintaining the health of plants, humans, and other living beings. In plants, distinct microbiomes are associated with various niches—above ground (in the phyllosphere), in the internal tissues (in the endosphere), and below ground (in the rhizosphere)—of the same plant. The rhizospheric microbiome contains various microbes such as bacteria, fungi, actinomycetes, algae, protozoans, and nematodes. These microbes promote plant growth by nutrient acquisition, suppression of pathogens, and alleviation of abiotic stress.

This chapter reviews the function of the rhizospheric microbiome in plant health management and in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadzadeh M, Afsharmanesh H, Javan-Nikkhah M, Sharifi-Tehrani A (2006) Identification of some molecular traits in fluorescent pseudomonads with antifungal activity. Iran J Biotechnol 4:245–253

    Google Scholar 

  • Ajar NY, Priyanka V, Divjot K, Kusam LR, Vinod K, Bhanumati S, Vinay SC, Sugitha TCK, Anil KS, Harcharan SD (2017) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Res 3:555601. https://doi.org/10.19080/IJESNR.2017.03.555601.08

    Article  Google Scholar 

  • Azevedo JL, Maccheroni W Jr, Pereira JO, de Araújo WL (2000) Endophytic microorganism a review on insect control and recent advances on tropical plants. Electron J Biotechnol 1:40–65

    Google Scholar 

  • Baker KF (1987) Evolving concepts of biological control of plant pathogens. Annu Rev Phytopathol 25:67–85

    Article  Google Scholar 

  • Boraste A, Vamsi KK, Jhadav A, Khairnar Y, Gupta N, Trivedi S, Patil P, Gupta G, Gupta M, Mujapara AK, Joshi B (2009) Biofertilizers: a novel tool for agriculture. Int J Microbiol Res 1:23–31

    Article  Google Scholar 

  • Brown M, Burlingham SK (1968) Production of plant growth substances by Azotobacter chroococcum. J Gen Microbiol 53:135–144

    Article  CAS  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2013) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459. https://doi.org/10.1007/s00344-013-9362-4

    Article  CAS  Google Scholar 

  • Cheng W, Gershenson A (2007) Carbon fluxes in the rhizosphere. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere—an ecological perspective. Academic, San Diego, pp 31–56

    Google Scholar 

  • DeBach P (1964) The scope of biological control. In: Paul DeBach, Evert I Schlinger. Biological control of insect pests and weeds. Reinhold Publishing Corporation, New York, pp 3–20

    Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  Google Scholar 

  • Dey R, Sarkar K, Dutta S, Murmu S, Mandal N (2017) Role of Azotobacter sp. isolates as a plant growth promoting agent and their antagonistic potentiality against soil borne pathogen (Rhizoctonia solani) under in vitro condition. Int J Curr Microbiol App Sci 6:2830–2836

    Article  Google Scholar 

  • Doornbos RF, van Loon CL, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Dimpka C (2016) Microbial siderophores: production, detection and application in agriculture and environment. Endocytobiosis Cell Res 27:7–16

    Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci, India, Sect A Biol Sci 85:1–12

    Article  CAS  Google Scholar 

  • Farzaneh M, Vierheilig H, Lössl A, Kaul HP (2011) Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ 57:465–470

    Article  CAS  Google Scholar 

  • Filho RL, Romeiro RS, Alves E (2010) Bacterial spot and early blight biocontrol by epiphytic bacteria in tomato plants. Pesq Agropec Bras 45:1381–1387

    Article  Google Scholar 

  • Foldes T, Banhegyi I, Herpai Z, Varga L, Szigeti J (2000) Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage micro-organisms. J Appl Microbiol 89:840–846

    Article  CAS  Google Scholar 

  • Geetanjali, Jain P (2016) Antibiotic production by rhizospheric soil microflora—a review. Int J Pharm Sci Res 7:4304–4314

    CAS  Google Scholar 

  • Gupta A, Gopal M (2008) Siderophore production by plant growth promoting rhizobacteria. Indian J Agric Res 42:153–156

    Google Scholar 

  • Habte (2000) Mycorrhizal fungi and plant nutrition. In: Silva JA, Uchida R (eds) Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Manoa, pp 127–131

    Google Scholar 

  • Heyadri A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  Google Scholar 

  • Hirano SS, Upper CD (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64:624–653

    Article  CAS  Google Scholar 

  • Jenifer CA, Sharmili A, Anbumalarmathi J, Umamaheswari K, Shyamala K (2015) Studies on siderophore production by microbial isolates obtained from aquatic environment. Eur J Expt Biol 5:41–45

    Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: below ground solutions to an aboveground problem. Plant Physiol 66:689–700

    Article  Google Scholar 

  • Lederberg J, McCray AT (2001) ‘Ome sweet’ omics—a genealogical treasury of words. Scientist 15:8

    Google Scholar 

  • Lindermann RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizal effect. Phytopathology 78:366–371

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  Google Scholar 

  • Kandel SL, Joubert PM, Doty SL (2017) Bacterial endophyte colonization and distribution within plants. Microorganisms 5:77. https://doi.org/10.3390/microorganisms5040077

    Article  CAS  PubMed Central  Google Scholar 

  • Krimm U, Abanda-Nkpwatt D, Schwab W, Schreiber L (2005) Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microb Ecol 53:483–492. https://doi.org/10.1016/j.femsec.2005.02.004

    Article  CAS  Google Scholar 

  • Kumar VV (2018) Biofertilizers and biopesticides in sustainable agriculture. In: Meena VS (ed) Role of rhizospheric microbes in soil. Springer, Singapore, pp 377–398

    Chapter  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  Google Scholar 

  • Menge JA (1985) Mycorrhiza agriculture technologies. In: Innovative biological technologies for lesser developed countries—workshop proceedings. Office of Technology Assessment, Washington, DC, pp 185–203

    Google Scholar 

  • Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:379–284

    Article  Google Scholar 

  • Naher L, Yusuf UK, Ismail A, Hossain A (2014) Trichoderma spp.: a biocontrol agent for sustainable management of plant diseases. Pak J Bot 46:1489–1493

    Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26273–26726

    Article  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plant: mechanisms and controls. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Dordrecht, pp 97–123

    Google Scholar 

  • Niu D-D, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2010) The plant growth–promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signalling pathways. Mol Plant-Microbe Interact 24:533–542

    Article  Google Scholar 

  • Nongkhlaw FMW, Joshi SR (2014) Distribution pattern analysis of epiphytic bacteria on ethnomedicinal plant surfaces: a micrographical and molecular approach. J Microsc Ultrastruct 2:34–40. https://doi.org/10.1016/j.jmau.2014.02.003

    Article  Google Scholar 

  • Panchal RR, Desai PV (2016) Study of gibberellic acid production by solid state fermentation using Fusarium moniliforme Sheldon. Int J Appl Sci Biotechnol 4:402–407

    Article  CAS  Google Scholar 

  • Pandey A, Malviya T (2014) Production of antibiotics isolated from soil bacteria from rhizospheric and non-rhizospheric region of medicinal plants. Ind J App Res 4:25–32

    Article  Google Scholar 

  • Patel MV, Patel RK (2014) Indole-3-acetic acid (IAA) production by endophytic bacteria isolated from saline dessert, the little Runn of Kutch. CIB Tech J Microbiol 3:17–28

    Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2014) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13:63–77. https://doi.org/10.1007/s11157-013-9317-z

    Article  CAS  Google Scholar 

  • Rangaswamy V (2012) Improved production of gibberellic acid by Fusarium moniliforme. J Microbiol Res 2:51–55

    Google Scholar 

  • Rani TU, Naidu NV, Ramalaxmi CS, Kumar VV, Sreelatha T (2011) Bioefficacy of mycorrhizae on yield and quality of sugarcane. J Soils Crops 21:1–8

    Google Scholar 

  • Robin A, Vansuyt G, Hinsinger P, Meyer JM, Briat JF, Lemanceau P (2008) Iron dynamics in the rhizosphere: consequences for plant health and nutrition. Adv Agron 99:183–225

    Article  CAS  Google Scholar 

  • Rout ME, Southworth D (2013) The root microbiome influences scales from molecules to ecosystems: the unseen majority. Am J Bot 100:1689–1691

    Article  Google Scholar 

  • Schenkeveld Y, Schindlegger Y, Oburger E, Puschenreiter M, Hann S, Kraemer SM (2014) Geochemical processes constraining iron uptake in strategy II Fe acquisition. Environ Sci Technol 48:12662–12670

    Article  CAS  Google Scholar 

  • Schreiber L, Krimm U, Knoll D, Sayed M, Auling G, Kroppenstedt RM (2005) Plant–microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol 166:589–594

    Article  CAS  Google Scholar 

  • Sharma A, Diwevidi VD, Singh S, Pawar KK, Jerman M, Singh M, Singh S, Srivastawa D (2013) Biological control and its important in agriculture. Int J Biotech Bioeng Res 4:175–180

    Google Scholar 

  • Sharma S, Kaur M (2017) Plant hormones synthesized by microorganisms and their role in biofertilizer—a review article. Int J Adv Res 5(12):1753–1762

    Article  Google Scholar 

  • Showkat S, Murtaza I, Laila O, Ali A (2012) Biological control of Fusarium oxysporum and Aspergillus sp. by Pseudomonas fluorescens isolated from wheat rhizosphere soil of Kashmir. IOSR J Pharm Biol Sci 1:24–32

    Google Scholar 

  • Sivasakthi S, Saranraj P, Sivasakthivelan P (2017) Biological nitrogen fixation by Azotobacter sp.—a review. Indo Asian J Multidiscip Res 3:1274–1284

    Google Scholar 

  • Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. New Zealand J Crop Hort Sci 31:281–291

    Article  Google Scholar 

  • Takagi S, Kamei S, Yu MH (2008) Efficiency of iron extraction from soil by mugineic acid family phytosiderophores. J Plant Nutr 11:643–651

    Article  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenkoornhuyse P, Mahe S, Ineson P, Staddon P, Ostlet N, Cliquet J-B, Francez AA-J, Fitter AH, Young JPW (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Natl Acad Sci 104:16970–16975

    Article  CAS  Google Scholar 

  • Vinalea F, Sivasithamparamb K, Ghisalbertic EL, Marraa R, Wooa SL, Loritoa M (2008) Trichoderma plant pathogen interactions. Soil Biol Biochem 40:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V.V. (2019). Influence of the Rhizospheric Microbiome in Plant Health Management. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (eds) Microbiome in Plant Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-8495-0_10

Download citation

Publish with us

Policies and ethics