Skip to main content

Abstract

Microorganisms that produce methane as an end product of their energy-generating metabolism are known as methanogens. They represent phylum Euryarchaeota and are one of the most diverse groups of archaea. The ability of methanogens to utilize carbon dioxide and other by-products of bacterial metabolism as a ‘C’ and ‘E’ source and eventually convert them into methane has become the focus of recent research. Methanogens make significant contribution to global warming through emission of methane, the greenhouse gas. Biogenic methane in the form of methane hydrate trapped in subsurface sediments amounts to massive deposits of methane. Methane emissions from such deposits as a consequence of tectonic shifts can contribute to global warming through creation of ozone holes. Methane hydrates on the other hand can also serve as an untapped source of energy. Methane, if recovered, can be used as fuel, for heating, electricity/energy production and also for the synthesis of valuable chemicals. Methanogenic waste treatment of high-strength industrial waste has made the effluent treatment a cost-efficient process rather than a cost-intensive one. Although emissions of methane have adverse impact on the environment, the desirable use of methanogens for reducing environmental pollution, renewable energy generation and the synthesis of valuable chemicals has made methanogens in the environment a ‘boon rather than bane’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bär K, Mörs F, Götz M, Graf F (2015) Vergleich der biologischen und katalytischen Methanisierung für den Einsatz bei PtG-Konzepten. gwf-Gas7:1–8

    Google Scholar 

  • Bass C (1999) ZoBell’s contribution to petroleum microbiology. In: Proceedings of the 8th international symposium on microbial ecology. Microbial biosystems: New Frontiers. Atlantic Canada Society for Microbial Ecology, Halifax, Canada

    Google Scholar 

  • Bastin ES, Greer FE, Merritt C, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63(1618):21–24

    Article  CAS  PubMed  Google Scholar 

  • Bellack A, Huber H, Rachel R, Wanner G, Wirth R (2011) Methanocaldococcus villosus sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell–cell contacts. Intl J Syst Evolut Microbiol 61(6):1239–1245

    Article  Google Scholar 

  • Belyaev S, Obraztsova AY, Laurinavichus K, Bezrukova L (1986) Characteristics of rod-shaped methane-producing bacteria from an oil pool and description of methanobacterium-ivanovii sp-nov. Microbiology 55(6):821–826

    Google Scholar 

  • Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM (1997) Molecular phylogeny of Archaea from soil. Proc Natl Acad Sci USA 94(1):277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkeland N (2004) Petroleum biotechnology – developments and perspectives – chapter 14: the microbial diversity of deep subsurface oil reservoirs. Elsevier Science BV, Amsterdam, pp 385–404

    Book  Google Scholar 

  • Blasco-Gómez R, Batlle-Vilanova P, Villano M, Balaguer MD, Colprim J, Puig S (2017) On the edge of research and technological application: a critical review of electromethanogenesis. Intl J Mol Sci 18(4):874

    Article  CAS  Google Scholar 

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YP, Perov AN (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69(10):6143–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40(3):626–632

    Google Scholar 

  • Boone DR, Whitman WB (1988) Proposal of minimal standards for describing new taxa of methanogenic bacteria. Intl J Syst Evolut Microbiol 38(2):212–219

    Google Scholar 

  • Borrel G, Parisot N, Harris HM, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genom 15(1):679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442(7099):192

    Article  CAS  PubMed  Google Scholar 

  • Bryant M, Wolin E, Wolin M, Wolfe R (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Archiv für Mikrobiologie 59(1–3):20–31

    Article  CAS  PubMed  Google Scholar 

  • Buckley DH, Baumgartner LK, Visscher PT (2008) Vertical distribution of methane metabolism in microbial mats of the Great Sippewissett Salt Marsh. Environ Microbiol 10(4):967–977

    Article  CAS  PubMed  Google Scholar 

  • Cadillo-Quiroz H, Bräuer SL, Goodson N, Yavitt JB, Zinder SH (2014) Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands. Intl J Syst Evolut Microbiol 64(5):1473–1480

    Article  CAS  Google Scholar 

  • Carr SA, Schubotz F, Dunbar RB, Mills CT, Dias R, Summons RE, Mandernack KW (2018) Acetoclastic Methanosaeta are dominant methanogens in organic-rich Antarctic marine sediments. ISME J 12(2):330–342

    Article  PubMed  Google Scholar 

  • Chaudhary P, Sirohi S (2009) Dominance of Methanomicrobium phylotype in methanogen population present in Murrah buffaloes (Bubalus bubalis). Lett Appl Microbiol 49(2):274–277

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary PP, Conway PL, Schlundt J (2018) Methanogens in humans: potentially beneficial or harmful for health. Appl Microbiol Biotechnol 102(7):3095–3104

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Qiu T-L, Yin X-B, Wu X-L, Hu G-Q, Deng Y, Zhang H (2007) Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Intl J Syst Evolut Microbiol 57(12):2964–2969

    Article  CAS  Google Scholar 

  • Cheng L, Qiu T-L, Li X, Wang W-D, Deng Y, Yin X-B, Zhang H (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol Lett 285(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov, a novel hydrogenotrophic methanogen from Shengli Oilfields. Appl Environ Microbiol:00210–00211

    Google Scholar 

  • Costa KC, Leigh JA (2014) Metabolic versatility in methanogens. Curr Opin Biotechnol 29:70–75

    Article  CAS  PubMed  Google Scholar 

  • Curson AR, Todd JD, Sullivan MJ, Johnston AW (2011) Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol 9(12):849

    Article  CAS  PubMed  Google Scholar 

  • Dabir A, Honkalas V, Arora P, Pore S, Ranade D, Dhakephalkar PK (2014) Draft genome sequence of Methanoculleus sp. MH98A, a novel methanogen isolated from sub-seafloor methane hydrate deposits in Krishna Godavari basin. Mar Genomics 18:139–140

    Article  Google Scholar 

  • Demirel B, Scherer P (2008a) Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass Bioenergy 32(3):203–209

    Article  CAS  Google Scholar 

  • Demirel B, Scherer P (2008b) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190

    Article  CAS  Google Scholar 

  • Denman SE, Tomkins NW, McSweeney CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62(3):313–322

    Article  CAS  PubMed  Google Scholar 

  • Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. Nov., sp. nov., a methanogenic archaeon isolated from human faeces. Intl J Syst Evolut Microbiol 62(8):1902–1907

    Article  CAS  Google Scholar 

  • Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens: biochemical background and biotechnological applications. AMB Express 8(1):1

    Google Scholar 

  • Ferry JG (1992) Biochemistry of methanogenesis. Critic Rev Biochem Mol Biol 27(6):473–503

    Article  CAS  PubMed  Google Scholar 

  • Ferry JG (2012) Methanogenesis: ecology, physiology, biochemistry & genetics. Springer

    Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, De Macario EC, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from ace Lake, Antarctica. Intl J Syst Evolut Microbiol 47(4):1068–1072

    CAS  Google Scholar 

  • Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère J-F (2014) Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20(43):16062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia J-L, Patel BK, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6(4):205–226

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32(8):1460–1475

    Article  CAS  PubMed  Google Scholar 

  • Gieg LM, Duncan KE, Suflita JM (2008) Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74(10):3022–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gieg LM, Davidova IA, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12(11):3074–3086

    Article  CAS  PubMed  Google Scholar 

  • Goyal N, Zhou Z, Karimi IA (2016) Metabolic processes of Methanococcus maripaludis and potential applications. Microbial Cell Factories 15(1):107

    Google Scholar 

  • Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54(3):427–443

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R (2001) Bergey’s manuals and the classification of prokaryotes. Intl Microbiol 4(2):103–109

    Google Scholar 

  • Hallmann C, Schwark L, Grice K (2008) Community dynamics of anaerobic bacteria in deep petroleum reservoirs. Nature Geosci 1(9):588

    Article  CAS  Google Scholar 

  • Hausinger RP, Orme-Johnson WH and Walsh C (1985) Factor 390 chromophores: phosphodiester between AMP or GMP and methanogenic factor 420. Biochemistry 24(7):1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Hebert AM, Kropinski AM, Jarrell KF (1991) Heat shock response of the archaebacterium Methanococcus voltae. J Bacteriol 173(10):3224–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412(6844):324

    Article  CAS  PubMed  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484

    Article  CAS  PubMed  Google Scholar 

  • Hovorka S (1987) Depositional environments of marine-dominated bedded halite, Permian San Andres Formation, Texas. Sedimentology 34(6):1029–1054

    Article  Google Scholar 

  • Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Archives Microbiol 132(1):47–50

    Article  Google Scholar 

  • Hungate R (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic, New York, pp 118–132

    Google Scholar 

  • Jabłoński S, Rodowicz P, Łukaszewicz M (2015) Methanogenic archaea database containing physiological and biochemical characteristics. Intl J Syst Evolut Microbiol 65(4):1360–1368

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74(12):3619–3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis GN, Strömpl C, Burgess DM, Skillman LC, Moore ER, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40(5):327–332

    Article  CAS  PubMed  Google Scholar 

  • Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A (2005) Hyperthermophilic and methanogenic archaea in oil fields. In Petroleum microbiology, American Society of Microbiology, Washington, DC, pp 55–69

    Google Scholar 

  • Jones D, Head I, Gray N, Adams J, Rowan A, Aitken C, Bennett B, Huang H, Brown A, Bowler B (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451(7175):176

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Lanjekar V, Dhakephalkar PK, Dagar SS (2018) Cultivation of multiple genera of hydrogenotrophic methanogens from different environmental niches. Anaerobe 50:64–68

    Article  CAS  PubMed  Google Scholar 

  • Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71(1):331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama T, Yoshioka H, Takahashi HA, Amo M, Fujii T, Sakata S, (2016) Changes in microbial communities associated with gas hydrates in subseafloor sediments from the Nankai Trough. FEMS Microbiol Ecol 92(8)

    Article  CAS  PubMed  Google Scholar 

  • Kendall MM, Boone DR (2006) Cultivation of methanogens from shallow marine sediments at Hydrate Ridge, Oregon. Archaea 2(1):31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiene RP, Visscher PT (1987) Production and fate of methylated sulfur compounds from methionine and dimethylsulfoniopropionate in anoxic salt marsh sediments. Appl Environ Microbiol 53(10):2426–2434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiene RP, Oremland RS, Catena A, Miller LG, Capone DG (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52(5):1037–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiener A, Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. System Appl Microbiol 4(3):305–312

    Article  CAS  PubMed  Google Scholar 

  • Kim B-C, Jeong H (2018) Complete genome sequence of Methanobrevibacter smithii strain KB11, isolated from a Korean Fecal sample. Genome Announc 6(7):e00038–e00018

    Article  Google Scholar 

  • Kim DD, O’Farrell C, Toth CR, Montoya O, Gieg LM, Kwon TH, Yoon S (2018) Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs. Microb Biotechnol 11:788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby TW, Lancaster JR Jr, Fridovich I (1981) Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210(1):140–148

    Article  CAS  PubMed  Google Scholar 

  • Kougias PG, Angelidaki I (2018) Biogas and its opportunities – a review. Front Environ Sci Eng 12:1–12

    Article  CAS  Google Scholar 

  • Krivushin KV, Shcherbakova VA, Petrovskaya LE, Rivkina EM (2010) Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol 60(2):455–459

    Article  CAS  PubMed  Google Scholar 

  • Kulik EM, Sandmeier H, Hinni K, Meyer J (2001) Identification of archaeal rDNA from subgingival dental plaque by PCR amplification and sequence analysis. FEMS Microbiol Lett 196(2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Indugu N, Vecchiarelli B, Pitta DW (2015) Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol 6:781

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dagar SS, Agrawal R, Puniya AK (2018) Comparative diversity analysis of ruminal methanogens in Murrah buffaloes (Bubalus bubalis) in four states of North India. Anaerobe 52:52–63

    Google Scholar 

  • Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. And sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110 C. Arch Microbiol 156(4):239–247

    Article  CAS  Google Scholar 

  • L’Haridon S, Chalopin M, Colombo D, Toffin L (2014) Methanococcoides vulcani sp. nov., a marine methylotrophic methanogen that uses betaine, choline and N, N-dimethylethanolamine for methanogenesis, isolated from a mud volcano, and emended description of the genus Methanococcoides. Int J Syst Evol Microbiol 64(6):1978–1983

    Article  CAS  PubMed  Google Scholar 

  • Lay J-J, Li Y-Y, Noike T (1997) Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res 31(6):1518–1524

    Article  CAS  Google Scholar 

  • Lebuhn M, Liu F, Heuwinkel H, Gronauer A (2008) Biogas production from mono-digestion of maize silage–long-term process stability and requirements. Water Sci Technol 58(8):1645–1651

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125(1):171–189

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Boone DR, Sleat R, Mah RA (1985) Methanosarcina mazei LYC, a new methanogenic isolate which produces a disaggregating enzyme. Appl Eenviron Microbiol 49(3):608–613

    CAS  Google Scholar 

  • Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 43(6):1373–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lupa B, Hendrickson EL, Leigh JA, Whitman WB (2008) Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Appl Environ Microbiol 74(21):6584–6590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maczulak AE, Wolin M, Miller TL (1989) Increase in colonic methanogens and total anaerobes in aging rats. Appl Environ Microbiol 55(10):2468–2473

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGenity TJ and Sorokin DY (2018) Methanogens and methanogenesis in hypersaline environments. Biogenesis of hydrocarbons. Cham, Cham Springer 1–27

    Google Scholar 

  • McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122(2):129–135

    Article  CAS  Google Scholar 

  • McInerney M, Bryant M, Hespell R, Costerton J (1981) Syntrophomonas wolfei gen. Nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41(4):1029–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKay CP, Rask JC, Detweiler AM, Bebout BM, Everroad RC, Lee JZ, Chanton JP, Mayer MH, Caraballo AA, Kapili B (2016) An unusual inverted saline microbial mat community in an Interdune Sabkha in the Rub’al Khali (the Empty Quarter), United Arab Emirates. PLoS One 11(3):e0150342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69(6):3311–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52(3):819–822

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin M, de Macario EC, Macario A (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43(1):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morvan B, Dore J, Rieu-Lesme F, Foucat L, Fonty G, Gouet P (1994) Establishment of hydrogen-utilizing bacteria in the rumen of the newborn lamb. FEMS Microbiol Lett 117(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Takahashi A, Mori C, Tamaki H, Mochimaru H, Nakamura K, Takamizawa K, Kamagata Y (2013) Methanothermobacter tenebrarum sp. nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field. Int J Syst Evol Microbiol 63(2):715–722

    Article  CAS  PubMed  Google Scholar 

  • Ni S, Boone DR (1991) Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Evol Microbiol 41(3):410–416

    CAS  Google Scholar 

  • Nicholson MJ, Evans PN, Joblin KN (2007) Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis: identification of uncultured methanogens. Microb Ecol 54(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62(2):728–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Obraztsova A, Laurinavinchus K, Bezrukova L, Tsyban V, Belyaev S (1987a) Biological properties of methanosarcina not utilizing carbonic-acid and hydrogen. Microbiology 56(6):807–812

    Google Scholar 

  • Obraztsova AY, Shipin O, Bezrukova L, Belyaev S (1987b) Properties of the coccoid methylotrophic methanogen, Methanococcoides euhalobius sp-nov. Microbiology 56(4):523–527

    Google Scholar 

  • Ollivier B, Cayol J-L, Patel B, Magot M, Fardeau M-L, Garcia J-L (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147(1):51–56

    Article  CAS  PubMed  Google Scholar 

  • Ollivier B, Fardeau M-L, Cayol J-L, Magot M, Patel BK, Prensier G, Garcia J-L (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Evol Microbiol 48(3):821–828

    Google Scholar 

  • Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. CRC Press, Boca Raton

    Google Scholar 

  • Oremland RS, Marsh LM, Polcin S (1982) Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature 296(5853):143

    Article  CAS  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13(8):1908–1923

    Article  CAS  PubMed  Google Scholar 

  • Orphan V, Taylor L, Hafenbradl D, Delong E (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66(2):700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranade D, Gore J, Deshpande P, Godbole S, Wagle P (1979) Use of dry dung-cakes for biogas production. Khadi Gramodyog (India), pp 502–506

    Google Scholar 

  • Rastogi G, Ranade DR, Yeole TY, Gupta AK, Patole MS, Shouche YS (2008) Molecular analyses of methanogen diversity associated with cattle dung. World J Microbiol Biotechnol 24(12):2973–2979

    Article  CAS  Google Scholar 

  • Rea S, Bowman JP, Popovski S, Pimm C, Wright A-DG (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57(3):450–456

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Patel MK, Blok K (2008) Steam cracking and methane to olefins: energy use, CO2 emissions and production costs. Energy 33(5):817–833

    CAS  Google Scholar 

  • Rimbault A, Niel P, Virelizier H, Darbord JC, Leluan G (1988) L-Methionine, a precursor of trace methane in some proteolytic clostridia. Appl Environ Microbiol 54(6):1581–1586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rincón B, Borja R, González J, Portillo M, Sáiz-Jiménez C (2008) Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng J 40(2):253–261

    Article  CAS  Google Scholar 

  • Rivkina E, Shcherbakova V, Laurinavichius K, Petrovskaya L, Krivushin K, Kraev G, Pecheritsina S, Gilichinsky D (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Rosselló-Móra R, Amann R (2015) Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 38(4):209–216

    Article  PubMed  Google Scholar 

  • Sakata S, Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, Kamagata Y (2017) Methane production from coal by a single methanogen. AGU Fall Meeting Abstracts

    Google Scholar 

  • Savant D, Shouche Y, Prakash S, Ranade D (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52(4):1081–1087

    CAS  PubMed  Google Scholar 

  • Shcherbakova V, Rivkina E, Pecheritsyna S, Laurinavichius K, Suzina N, Gilichinsky D (2011) Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61(1):144–147

    Article  CAS  PubMed  Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65(2):837–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Kendall MM, Liu Y, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55(6):2531–2538

    Article  CAS  PubMed  Google Scholar 

  • Sirohi SK, Chaudhary PP, Singh N, Singh D, Puniya AK (2013) The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene 523(2):161–166

    Article  CAS  PubMed  Google Scholar 

  • Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004) 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 10(5):277–285

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, Ciordia S, Mena MC, Merkel AY, Wolf YI (2017) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2(8):17081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger WW, Hackstein JH, Keltjens JT (2007) The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. FEMS Microbiol Ecol 60(2):266–275

    Article  CAS  PubMed  Google Scholar 

  • Stewart LC, Jung J-H, Kim Y-T, Kwon S-W, Park C-S, Holden JF (2015) Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65(4):1280–1283

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Præsteng KE, Glad T, Mathiesen SD, Wright A-DG (2009a) Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57(2):335–348

    Article  CAS  PubMed  Google Scholar 

  • Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, Northwood KS, Præsteng KE, Glad T, Mathiesen SD, Wright A-DG (2009b) Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiol Ecol 70(3):553–562

    Article  CAS  PubMed  Google Scholar 

  • Toth CR, Gieg LM (2018) Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition. Front Microbiol 8:2610

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81(1–4):271–282

    Article  CAS  PubMed  Google Scholar 

  • Valentine DL (2011) Emerging topics in marine methane biogeochemistry. Annu Rev Mar Sci 3:147–171

    Article  Google Scholar 

  • Valentine DL, Blanton DC, Reeburgh WS (2000) Hydrogen production by methanogens under low-hydrogen conditions. Arch Microbiol 174(6):415–421

    Article  CAS  PubMed  Google Scholar 

  • Vandaele AC, Neefs E, Drummond R, Thomas IR, Daerden F, Lopez-Moreno J-J, Rodriguez J, Patel MR, Bellucci G, Allen M (2015) Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet Space Sci 119:233–249

    Article  Google Scholar 

  • Vanegas C, Bartlett J (2013) Anaerobic digestion of Laminaria digitata: the effect of temperature on biogas production and composition. Waste Biomass Valorizat 4(3):509–515

    Article  CAS  Google Scholar 

  • Varjani SJ, Gnansounou E (2017) Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol 245:1258

    Article  CAS  PubMed  Google Scholar 

  • Vigneron A, Bishop A, Alsop EB, Hull K, Rhodes I, Hendricks R, Head IM, Tsesmetzis N (2017) Microbial and isotopic evidence for methane cycling in hydrocarbon-containing groundwater from the Pennsylvania region. Front Microbiol 8:593

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishnivetskaya TA, Buongiorno J, Bird J, Krivushin K, Spirina EV, Oshurkova V, Shcherbakova VA, Wilson G, Lloyd KG, Rivkina EM (2018) Methanogens in the Antarctic Dry Valley Permafrost. FEMS Microbiol Ecol 94

    Google Scholar 

  • Voordouw G (2011) Production-related petroleum microbiology: progress and prospects. Curr Opin Biotechnol 22(3):401–405

    Article  CAS  PubMed  Google Scholar 

  • Wasserfallen A, Nölling J, Pfister P, Reeve J, De Macario EC (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. Nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50(1):43–53

    Article  CAS  PubMed  Google Scholar 

  • Watkins AJ, Roussel EG, Parkes RJ, Sass H (2014) Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.). Appl Environ Microbiol 80(1):289–293

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB (2015) Bergey’s manual of systematics of Archaea and Bacteria. Wiley Online Library

    Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: The prokaryotes. Springer, New York, pp 165–207

    Chapter  Google Scholar 

  • Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59(3):611–621

    Article  CAS  PubMed  Google Scholar 

  • Winfrey MR, Ward DM (1983) Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol 45(1):193–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zinder SH (1993) Physiological ecology of methanogens. In: Methanogenesis. Springer, New York, pp 128–206

    Chapter  Google Scholar 

  • Zuo G, Hao B (2015) CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 13(5):321–331

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhakephalkar, P.K., Prakash, O., Lanjekar, V.B., Tukdeo, M.P., Ranade, D.R. (2019). Methanogens for Human Welfare: More Boon Than Bane. In: Satyanarayana, T., Das, S., Johri, B. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8487-5_21

Download citation

Publish with us

Policies and ethics