Skip to main content

Rhizospheric Microbiome Engineering as a Sustainable Tool in Agriculture: Approaches and Challenges

  • Chapter
  • First Online:

Abstract

Rhizosphere is considered to be supportive of a high microbial diversity because of rich exudation from plant roots. Roots recruit a specific microbial community in this zone, which is beneficial to the plant. Potential of plant growth promoting rhizobacteria (PGPR) has been harnessed since years to serve as bioinoculants. Despite being an eco-friendly alternative to chemicals, and hence of crucial importance in sustainable agriculture, the amendment with single or multiple strains of PGPR has its own set of limitations. After decades of single (and multiple) strain amendments in agriculture, the newer approach is to engineer plant and/or microbiome in the rhizosphere to ultimately lead to enhanced growth of the plant and its ability to alleviate stress. With the recent concept of “holobiont” these two components are no longer separate entities. The present chapter focuses on engineering the rhizospheric microbiome by two approaches, viz. synthetic microbial communities and plant-mediated selection, so as to favour the respective plant’s growth. Studies that have attempted the approach have been critically presented. Also, the current limitations in taking the approaches to field have been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahkami AH, White RA III, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243

    Article  Google Scholar 

  • Armanhi JSL, de Souza RSC, Damasceno NDB, de Araújo LM, Imperial J, Arruda P (2018) A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome. Front Plant Sci 8:2191

    Article  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Hüttel B (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Bakker PA, Pieterse CM, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell 172:1178–1180

    Article  CAS  Google Scholar 

  • Beckers B, De Beeck MO, Weyens N, Boerjan W, Vangronsveld J (2017) Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25

    Article  Google Scholar 

  • Ben Said S, Or D (2017) Synthetic microbial ecology: engineering habitats for modular consortia. Front Microbiol 8:1125

    Article  Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, Jonge R, Burgman WP et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PloS One 8:e56329

    Article  CAS  Google Scholar 

  • Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10:e1004283

    Article  Google Scholar 

  • Bolstridge N, Card S, Stewart A, Jones EE (2009) Use of rifampicin-resistant bacterial biocontrol strains for monitoring survival in soil and colonisation of pea seedling roots. New Zealand Plant Protect 62:34–40

    Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trend Biotechnol 26:483–489

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Peplies J (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793

    Article  Google Scholar 

  • Chen H, Wu H, Yan B, Zhao H, Liu F, Zhang H, Liang Z (2018) Core microbiome of medicinal plant Salvia miltiorrhiza seed: a rich reservoir of beneficial microbes for secondary metabolism? Int J Mol Sci 19:672

    Article  Google Scholar 

  • Colin Y, Nicolitch O, Nostrand JD, Zhou JZ, Turpault MP, Uroz S (2017) Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Sci Rep 7:9604

    Google Scholar 

  • Compeau G, Al-Achi BJ, Platsouka E, Levy SB (1988) Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol 54:2432–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • del Carmen Orozco-Mosqueda M, del Carmen Rocha-Granados M, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31

    Article  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2016) Engineering the rhizosphere. Trend Plant Sci 21:266–278

    Article  CAS  Google Scholar 

  • Devi TP, Prabhakaran N, Kamil D, Borah JL, Alemayehu G (2013) Development of SCAR marker for specific detection of Aspergillusflavus. Afr J Microbiol Res 7:783–790

    Google Scholar 

  • Djavaheri M, Mercado-Blanco J, Versluis C, Meyer JM, Van Loon LC, Bakker PA (2012) Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. Tomato in Arabidopsis. Microbiol Open 1:311–325

    Article  CAS  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    Article  CAS  Google Scholar 

  • Eng A, Borenstein E (2016) An algorithm for designing minimal microbial communities with desired metabolic capacities. Bioinformatics 32:2008–2016

    Article  CAS  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA 115:201717617

    Article  Google Scholar 

  • Foo JL, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: current applications and its future. Biotechnol J 12:1600099

    Article  Google Scholar 

  • Ganeshamoorthi P, Dubey SC (2013) Phylogeny analysis of Indian strains of Rhizoctoniasolani isolated from chickpea and development of sequence characterized amplified region (SCAR) marker for detection of the pathogen. Afr J Microbiol Res 7:5516–5525

    Article  CAS  Google Scholar 

  • Grosskopf T, Soyer OS (2014) Synthetic microbial communities. Curr Opin Microbiol 18:72–77

    Article  CAS  Google Scholar 

  • Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, Singh BK (2018) Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol 20:124–140

    Article  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  Google Scholar 

  • Hu J, Wei Z, Friman VP, Gu SH, Wang XF, Eisenhauer N, Jousset A (2016) Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. MBio 7:e01790–e01716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes RK, Jans DC, Bremer E, Lupwayi NZ, Rice WA, Clayton GW, Collins MM (2001) Rhizobium population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different formulations. Can J Microbiol 47:595–600

    Article  CAS  Google Scholar 

  • Johns NI, Blazejewski T, Gomes AL, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbiol 31:146–153

    Article  Google Scholar 

  • Johnson D, Ellington J, Eaton W (2015) Development of soil microbial communities for promoting sustainability in agriculture and a global carbon fix. Peer J Pre Prints 3:e789v1

    Google Scholar 

  • Khan Z, Rho H, Firrincieli A, Hung SH, Luna V, Masciarelli O, Doty SL (2016) Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Curr Plant Biol 6:38–47

    Article  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Nat Acad Sci USA 109:14058–14062

    Article  CAS  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  Google Scholar 

  • Liu ZL, Sinclair JB, Chen W (1992) Genetic diversity of Rhizoctoniasolani anastomosis group 2. Phytopathol 82:778–787

    Article  CAS  Google Scholar 

  • Loper JE, Suslow TV, Schroth MN (1984) Lognormal distribution of bacterial populations in the rhizosphere. Phytopathology 74:1454–1460

    Article  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Edgar RC (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  Google Scholar 

  • Moronta-Barrios F, Gionechetti F, Pallavicini A, Marys E, Venturi V (2018) Bacterial microbiota of rice roots: 16S-based taxonomic profiling of endophytic and rhizospheric diversity, endophytes isolation and simplified endophytic community. Microorganisms 6:14

    Article  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trend Microbiol 23:606–617

    Article  CAS  Google Scholar 

  • Mueller UG, Juenger T, Kardish, M, Carlson A, Burns K, Smith C & De Marais D (2016) Artificial microbiome-selection to engineer microbiomes that confer salt-tolerance to plants. bio Rxiv. 081521

    Google Scholar 

  • Niu B, Paulson JN, Zheng X, Kolter R (2017) Simplified and representative bacterial community of maize roots. Proc Nat Acad Sci USA 114:201616148

    Article  Google Scholar 

  • Oyserman BO, Medema MH, Raaijmakers JM (2018) Road MAPs to engineer host microbiomes. Curr Opin Microbiol 43:46–54

    Article  CAS  Google Scholar 

  • Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989

    Article  CAS  Google Scholar 

  • Panke-Buisse K, Lee S, Kao-Kniffin J (2017) Cultivated sub-populations of soil microbiomes retain early flowering plant trait. Microb Ecol 73:394–403

    Article  CAS  Google Scholar 

  • Paredes SH, Gao T, Law TF, Finkel OM, Mucyn T, Teixeira PJPL, Jones CD (2018) Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol 16:e2003962

    Article  Google Scholar 

  • Parmar HJ, Bodar NP, Lakhani HN, Patel SV, Umrania VV, Hassan MM (2015) Production of lytic enzymes by Trichoderma strains during in vitro antagonism with Sclerotium rolfsii, the causal agent of stem rot of groundnut. Afr J Microbiol Res 9:365–372

    Article  CAS  Google Scholar 

  • Pfeiffer S, Mitter B, Oswald A, Schloter-Hai B, Schloter M, Declerck S, Sessitsch A (2016) Rhizosphere microbiomes of potato cultivated in the high Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol 93:fiw242

    Article  Google Scholar 

  • Pujol M, Badosa E, Cabrefiga J, Montesinos E (2005) Development of a strain-specific quantitative method for monitoring Pseudomonas fluorescens EPS62e, a novel biocontrol agent of fire blight. FEMS Microbiol Lett 249:343–352

    Article  CAS  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34:1245–1259

    Article  CAS  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    Article  Google Scholar 

  • Rillig MC, Antonovics J, Caruso T, Lehmann A, Powell JR, Veresoglou SD, Verbruggen E (2015) Interchange of entire communities: microbial community coalescence. Trend Ecol Evol 30:470–476

    Article  Google Scholar 

  • Rillig MC, Lehmann A, Aguilar-Trigueros CA, Antonovics J, Caruso T, Hempel S, Powell JR (2016a) Soil microbes and community coalescence. Pedobiologia 59:37–40

    Article  Google Scholar 

  • Rillig MC, Tsang A, Roy J (2016b) Microbial community coalescence for microbiome engineering. Front Microbiol 7:1967

    Article  Google Scholar 

  • Ruano-Rosa D, Cazorla FM, Bonilla N, Martín-Pérez R, De Vicente A, López-Herrera CJ (2014) Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur J Plant Pathol 138:751–762

    Article  Google Scholar 

  • Rubio MB, Hermosa MR, Keck E, Monte E (2005) Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichodermaharzianum 2413 in soil. Microb Ecol 49:25–33

    Article  CAS  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  CAS  Google Scholar 

  • Sivasubramaniam D, Franks AE (2016) Bioengineering microbial communities: their potential to help, hinder and disgust. Bioengineered 7:137–144

    Article  CAS  Google Scholar 

  • Swenson W, Wilson DS, Elias R (2000) Artificial ecosystem selection. Proc Nat Acad Sci USA 97:9110–9114

    Article  CAS  Google Scholar 

  • Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989

    Article  Google Scholar 

  • Tyler HL, Triplett EW (2008) Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu Rev Phytopathol 46:53–73

    Article  CAS  Google Scholar 

  • van der Ent S, Van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CM, Ton J (2009) Priming of plant innate immunity by rhizobacteria and β-aminobutyric acid: differences and similarities in regulation. New Phytologist 183:419–431

    Article  Google Scholar 

  • van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • von Felten A, Défago G, Maurhofer M (2010) Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. J Microbiol Meth 81:108–115

    Article  Google Scholar 

  • Vorholt JA, Vogel C, Carlström CI, Mueller DB (2017) Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:142–155

    Article  CAS  Google Scholar 

  • Wallenstein MD (2017) Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3:230–232

    Article  Google Scholar 

  • Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, Knight R (2018) Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Nat Acad Sci USA pii:201800918

    Google Scholar 

  • Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT et al (2016) Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J 10:2557–2568

    Article  Google Scholar 

  • Williams HT, Lenton TM (2007) Artificial selection of simulated microbial ecosystems. Proc Nat Acad Sci USA 104:8918–8923

    Article  CAS  Google Scholar 

  • Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2016) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1351

    Article  Google Scholar 

  • Yergeau E, Bell TH, Champagne J, Maynard C, Tardif S, Tremblay J, Greer CW (2015) Transplanting soil microbiomes leads to lasting effects on willow growth, but not on the rhizosphere microbiome. Front Microbiol 6:1436

    Article  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R et al (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:143

    Google Scholar 

  • Zhang Y, Ruyter-Spira C, Bouwmeester HJ (2015) Engineering the plant rhizosphere. Curr Opin Biotech 32:136–142

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, S., Sharma, S. (2019). Rhizospheric Microbiome Engineering as a Sustainable Tool in Agriculture: Approaches and Challenges. In: Satyanarayana, T., Das, S., Johri, B. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8487-5_11

Download citation

Publish with us

Policies and ethics